An Efficient Knowledge-Based Artificial Neural Network for the Design of Circularly Polarized 3-D-Printed Lens Antenna
An efficient knowledge-based artificial neural network (KBANN) is proposed, and it is used for the design of circularly polarized (CP) lens antenna in this article. In this KBANN, forward neural network (FNN) and inverse neural network (INN) are included. In this model, INN is the major component to...
Uložené v:
| Vydané v: | IEEE transactions on antennas and propagation Ročník 70; číslo 7; s. 5007 - 5014 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-926X, 1558-2221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | An efficient knowledge-based artificial neural network (KBANN) is proposed, and it is used for the design of circularly polarized (CP) lens antenna in this article. In this KBANN, forward neural network (FNN) and inverse neural network (INN) are included. In this model, INN is the major component to predict the antenna structure parameters. As multiple performance indices are required, INN requires a large number of training samples to deduce complex mapping relationship. To solve this problem, FNN is introduced to provide prior knowledge for INN. FNN generates a huge training dataset for INN training, and then the trained INN can directly output the geometric parameters by feeding the target electromagnetic responses as input. This article solves the problem of multiple performance indices in antenna design, and a CP lens antenna with wideband, good axial ratio, and high gain is designed and fabricated to verify the effectiveness of the KBANN model. |
|---|---|
| AbstractList | An efficient knowledge-based artificial neural network (KBANN) is proposed, and it is used for the design of circularly polarized (CP) lens antenna in this article. In this KBANN, forward neural network (FNN) and inverse neural network (INN) are included. In this model, INN is the major component to predict the antenna structure parameters. As multiple performance indices are required, INN requires a large number of training samples to deduce complex mapping relationship. To solve this problem, FNN is introduced to provide prior knowledge for INN. FNN generates a huge training dataset for INN training, and then the trained INN can directly output the geometric parameters by feeding the target electromagnetic responses as input. This article solves the problem of multiple performance indices in antenna design, and a CP lens antenna with wideband, good axial ratio, and high gain is designed and fabricated to verify the effectiveness of the KBANN model. |
| Author | Shao, Wei Liu, Yan-Fang Peng, Lin |
| Author_xml | – sequence: 1 givenname: Yan-Fang surname: Liu fullname: Liu, Yan-Fang organization: Key laboratory of Microwave and Optical Wave Application Technology, Guilin University of Electronic Technology, Guilin, Guangxi, China – sequence: 2 givenname: Lin orcidid: 0000-0002-1255-3118 surname: Peng fullname: Peng, Lin email: penglin528@hotmail.com organization: Key laboratory of Microwave and Optical Wave Application Technology, Guilin University of Electronic Technology, Guilin, Guangxi, China – sequence: 3 givenname: Wei orcidid: 0000-0001-9515-7091 surname: Shao fullname: Shao, Wei email: weishao@uestc.edu.cn organization: School of Physics, University of Electronic Science and Technology of China, Chengdu, China |
| BookMark | eNp9UD1PwzAQtRBIlI8dicUSc4rPjpN6DOVTVNABJLbIci5gCDbYLgh-PS5FDAxM793de3ent0XWnXdIyB6wMQBThzfNfMwZ52MBJRMg1sgIpJwUnHNYJyPGYFIoXt1tkq0YH3NZTspyRN4aR0_63hqLLtFL598H7O6xONIRO9qEZJczPdArXIRvSO8-PNHeB5oekB5jtPeO-p5ObTCLQYfhg859RvuZF4jiuJgH61LmM3SRNpk6p3fIRq-HiLs_uE1uT09upufF7PrsYtrMCsMVpKLsQTNlOpCohdD5_1pVIAQYVedmxcDUAjuphDRKKEAhleESTc1kJw0X2-Rgtfcl-NcFxtQ--kVw-WTLKyVBMjUps4qtVCb4GAP27Uuwzzp8tMDaZbptTrddptv-pJst1R-LsUkn610K2g7_GfdXRouIv3dUVdeqLsUXMQyHxA |
| CODEN | IETPAK |
| CitedBy_id | crossref_primary_10_1109_TAP_2022_3221613 crossref_primary_10_1007_s00521_024_10860_5 crossref_primary_10_1029_2023RS007912 crossref_primary_10_1109_LAWP_2025_3532623 crossref_primary_10_1109_TAP_2023_3331249 crossref_primary_10_1109_LMWT_2023_3329047 crossref_primary_10_1038_s41598_025_91643_3 crossref_primary_10_1109_TAP_2024_3503916 crossref_primary_10_1016_j_ymssp_2023_110282 crossref_primary_10_1063_5_0252990 crossref_primary_10_1109_TAP_2025_3534987 crossref_primary_10_1016_j_cjmeam_2023_100065 crossref_primary_10_1109_LAWP_2024_3378281 crossref_primary_10_1140_epjs_s11734_024_01347_4 crossref_primary_10_1109_LAWP_2024_3466248 crossref_primary_10_1109_TMTT_2023_3312978 crossref_primary_10_1016_j_aeue_2023_155068 crossref_primary_10_1109_TAP_2025_3542600 crossref_primary_10_1109_TAP_2024_3521222 crossref_primary_10_1109_LAWP_2024_3437436 crossref_primary_10_1109_TAP_2024_3384758 crossref_primary_10_32604_cmc_2023_037297 crossref_primary_10_1109_TAP_2024_3474913 crossref_primary_10_1109_TAP_2024_3373196 crossref_primary_10_1007_s10489_023_05200_4 crossref_primary_10_1109_TAP_2024_3388710 crossref_primary_10_1007_s10489_024_05853_9 crossref_primary_10_1109_TAP_2025_3552213 crossref_primary_10_1109_TAP_2023_3266051 crossref_primary_10_1109_LAWP_2024_3456838 |
| Cites_doi | 10.1109/LAWP.2015.2514065 10.1109/IJCNN.1992.227257 10.1109/TAP.2020.3026922 10.1109/TAP.2021.3069467 10.1109/TAP.2021.3069543 10.1109/8.1087 10.1109/LAWP.2016.2542211 10.1109/ACCESS.2020.3004895 10.1109/ACCESS.2020.2990157 10.1109/TAP.2018.2823775 10.1016/j.disopt.2020.100620 10.1109/LAWP.2014.2301844 10.1109/TAP.2016.2647693 10.1021/acsphotonics.0c00663 10.1109/MWSYM.1998.689312 10.1021/acsphotonics.7b01377 10.1038/s41598-018-29275-z 10.1109/TAP.2019.2902677 10.1109/TMTT.2018.2841889 10.1109/LAWP.2012.2213567 10.1109/ACCESS.2019.2930520 10.1109/TAP.2020.2972625 10.1109/TAP.2016.2537390 10.1021/acs.nanolett.8b03171 10.1109/TAP.2018.2869136 10.1109/LAWP.2015.2470128 10.1002/inf2.12116 10.1109/TAP.2019.2948492 10.1016/S1010-6030(01)00640-2 10.1109/TAP.2019.2951518 10.1109/LAWP.2021.3069713 10.1109/LAWP.2020.2969743 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TAP.2022.3140313 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2221 |
| EndPage | 5014 |
| ExternalDocumentID | 10_1109_TAP_2022_3140313 9677974 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology) grantid: CRKL190101 – fundername: Innovation Project of Guangxi Graduate Education grantid: YCSW2021178 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c291t-4f1a09cd15ea33a9267961331c97d15601c73ed5935c9391e359c25ec705d5c23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831273600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-926X |
| IngestDate | Mon Jun 30 10:20:39 EDT 2025 Sat Nov 29 08:02:53 EST 2025 Tue Nov 18 20:48:39 EST 2025 Wed Aug 27 02:02:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-4f1a09cd15ea33a9267961331c97d15601c73ed5935c9391e359c25ec705d5c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9515-7091 0000-0002-1255-3118 |
| PQID | 2695150984 |
| PQPubID | 85476 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9677974 crossref_citationtrail_10_1109_TAP_2022_3140313 proquest_journals_2695150984 crossref_primary_10_1109_TAP_2022_3140313 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on antennas and propagation |
| PublicationTitleAbbrev | TAP |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref25 ref20 ref21 Gupta (ref22) 2013; 3 ref28 ref27 ref29 ref8 ref7 Ioffe (ref26) ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref20 doi: 10.1109/LAWP.2015.2514065 – ident: ref23 doi: 10.1109/IJCNN.1992.227257 – ident: ref5 doi: 10.1109/TAP.2020.3026922 – ident: ref11 doi: 10.1109/TAP.2021.3069467 – ident: ref14 doi: 10.1109/TAP.2021.3069543 – ident: ref4 doi: 10.1109/8.1087 – ident: ref31 doi: 10.1109/LAWP.2016.2542211 – ident: ref2 doi: 10.1109/ACCESS.2020.3004895 – ident: ref9 doi: 10.1109/ACCESS.2020.2990157 – ident: ref18 doi: 10.1109/TAP.2018.2823775 – ident: ref24 doi: 10.1016/j.disopt.2020.100620 – ident: ref3 doi: 10.1109/LAWP.2014.2301844 – ident: ref7 doi: 10.1109/TAP.2016.2647693 – volume: 3 start-page: 24 issue: 1 year: 2013 ident: ref22 article-title: Artificial neural network publication-title: Netw. Complex Syst. – ident: ref27 doi: 10.1021/acsphotonics.0c00663 – ident: ref21 doi: 10.1109/MWSYM.1998.689312 – ident: ref13 doi: 10.1021/acsphotonics.7b01377 – ident: ref6 doi: 10.1038/s41598-018-29275-z – ident: ref34 doi: 10.1109/TAP.2019.2902677 – ident: ref17 doi: 10.1109/TMTT.2018.2841889 – ident: ref12 doi: 10.1109/LAWP.2012.2213567 – ident: ref25 doi: 10.1109/ACCESS.2019.2930520 – ident: ref8 doi: 10.1109/TAP.2020.2972625 – ident: ref32 doi: 10.1109/TAP.2016.2537390 – start-page: 448 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref26 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – ident: ref16 doi: 10.1021/acs.nanolett.8b03171 – ident: ref10 doi: 10.1109/TAP.2018.2869136 – ident: ref15 doi: 10.1109/LAWP.2015.2470128 – ident: ref28 doi: 10.1002/inf2.12116 – ident: ref33 doi: 10.1109/TAP.2019.2948492 – ident: ref29 doi: 10.1016/S1010-6030(01)00640-2 – ident: ref30 doi: 10.1109/TAP.2019.2951518 – ident: ref19 doi: 10.1109/LAWP.2021.3069713 – ident: ref1 doi: 10.1109/LAWP.2020.2969743 |
| SSID | ssj0014844 |
| Score | 2.557792 |
| Snippet | An efficient knowledge-based artificial neural network (KBANN) is proposed, and it is used for the design of circularly polarized (CP) lens antenna in this... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5007 |
| SubjectTerms | 3-D-printed Antenna design Antennas Artificial neural networks Circular polarization circularly polarized~(CP) antenna forward neural network (FNN) High gain inverse neural network (INN) Lens antennas Lenses Mathematical models Microstrip antennas Neurons Parameters Performance indices Predictive models prior knowledge Three dimensional printing Training |
| Title | An Efficient Knowledge-Based Artificial Neural Network for the Design of Circularly Polarized 3-D-Printed Lens Antenna |
| URI | https://ieeexplore.ieee.org/document/9677974 https://www.proquest.com/docview/2695150984 |
| Volume | 70 |
| WOSCitedRecordID | wos000831273600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2221 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014844 issn: 0018-926X databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH448aAHf4vTKTl4EYxrk7RpjlM3BGXsoLJbaZMMBqOTbhP0r_cl7YaiCJ7aQ14o_Zq-7yVfvgBcMG5sokRODZOaCmVjmnOR0AxTi8rzzFqv8n15lP1-MhyqwRpcrfbCWGu9-Mxeu1u_lm-meuGmytoqlhL5bwMaUspqr9ZqxUAkonJcDnEAs3i4XJIMVPupM8BCkDGsT4WzKvyWgvyZKj9-xD679Hb-91y7sF2zSNKpYN-DNVvsw9YXb8EDeOsUpOv9ITCWPCynzugNpi3jIyvvCOLsOfzF68EJkliCpJDceWkHmY7I7bj0YtXJOxm4Qnj8gR1wekcHpTObMOQRS2HScVr4IjuE51736fae1ocsUM1UOKdiFGaB0iaMbMZ5hq9OKkzxPNRKGrfNOtSSWxMpHmmEL7Q8UppFVssgMpFm_AjWi2lhj4EEuZbKxJkO41yMJDKhaGQFYyphuWBGNqG9fO-prh3I3UEYk9RXIoFKEanUIZXWSDXhchXxWrlv_NH2wCGzaleD0oTWEtq0Hp6zlMVILJEqJeLk96hT2HR9V7rcFqzPy4U9gw39Nh_PynP_5X0CNurU5w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTuMwFL1iYKSBBTA8RHl6MZuRxjR-xfGyvASiU3XRGXUXJbYrVUIpKgUJvp5rJ60YDUJilSxyk8gnzj3XPj4G-MGF85mRJXVcWyqNT2kpZEYLTC2mLAvvo8r3b1f3etlwaPpL8GuxFsZ7H8Vn_jScxrl8N7GPYaisbVKtkf9-gRUlJWf1aq3FnIHMZO25zLAL83Q4n5RMTHvQ6WMpyDlWqDKYFf6ThOKuKv_9imN-udr43JttwnrDI0mnBv47LPlqC9beuAtuw1OnIpfRIQJjye188IyeYeJyMbJ2jyDBoCMeoiKcII0lSAvJRRR3kMmInI-nUa5690z6oRQev-ANBL2g_Wmwm3Cki8Uw6QQ1fFXswJ-ry8H5NW22WaCWGzajcsSKxFjHlC-EKLDptMEkL5g12oWF1sxq4Z0yQlkEkHmhjOXKW50opywXu7BcTSq_ByQprTYuLSxLSznSyIXUyEvOTcZLyZ1uQXve7rltPMjDVhh3eaxFEpMjUnlAKm-QasHPRcR97b_xwbXbAZnFdQ0oLTicQ5s3HfQh5ylSSyRLmdx_P-oEvl0Pfnfz7k3v9gBWw3Nqle4hLM-mj_4Ivtqn2fhhehy_wldzfdgu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Knowledge-Based+Artificial+Neural+Network+for+the+Design+of+Circularly+Polarized+3-D-Printed+Lens+Antenna&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Liu%2C+Yan-Fang&rft.au=Peng%2C+Lin&rft.au=Shao%2C+Wei&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=0018-926X&rft.volume=70&rft.issue=7&rft.spage=5007&rft.epage=5014&rft_id=info:doi/10.1109%2FTAP.2022.3140313&rft.externalDocID=9677974 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon |