An Efficient Knowledge-Based Artificial Neural Network for the Design of Circularly Polarized 3-D-Printed Lens Antenna

An efficient knowledge-based artificial neural network (KBANN) is proposed, and it is used for the design of circularly polarized (CP) lens antenna in this article. In this KBANN, forward neural network (FNN) and inverse neural network (INN) are included. In this model, INN is the major component to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on antennas and propagation Ročník 70; číslo 7; s. 5007 - 5014
Hlavní autori: Liu, Yan-Fang, Peng, Lin, Shao, Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-926X, 1558-2221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An efficient knowledge-based artificial neural network (KBANN) is proposed, and it is used for the design of circularly polarized (CP) lens antenna in this article. In this KBANN, forward neural network (FNN) and inverse neural network (INN) are included. In this model, INN is the major component to predict the antenna structure parameters. As multiple performance indices are required, INN requires a large number of training samples to deduce complex mapping relationship. To solve this problem, FNN is introduced to provide prior knowledge for INN. FNN generates a huge training dataset for INN training, and then the trained INN can directly output the geometric parameters by feeding the target electromagnetic responses as input. This article solves the problem of multiple performance indices in antenna design, and a CP lens antenna with wideband, good axial ratio, and high gain is designed and fabricated to verify the effectiveness of the KBANN model.
AbstractList An efficient knowledge-based artificial neural network (KBANN) is proposed, and it is used for the design of circularly polarized (CP) lens antenna in this article. In this KBANN, forward neural network (FNN) and inverse neural network (INN) are included. In this model, INN is the major component to predict the antenna structure parameters. As multiple performance indices are required, INN requires a large number of training samples to deduce complex mapping relationship. To solve this problem, FNN is introduced to provide prior knowledge for INN. FNN generates a huge training dataset for INN training, and then the trained INN can directly output the geometric parameters by feeding the target electromagnetic responses as input. This article solves the problem of multiple performance indices in antenna design, and a CP lens antenna with wideband, good axial ratio, and high gain is designed and fabricated to verify the effectiveness of the KBANN model.
Author Shao, Wei
Liu, Yan-Fang
Peng, Lin
Author_xml – sequence: 1
  givenname: Yan-Fang
  surname: Liu
  fullname: Liu, Yan-Fang
  organization: Key laboratory of Microwave and Optical Wave Application Technology, Guilin University of Electronic Technology, Guilin, Guangxi, China
– sequence: 2
  givenname: Lin
  orcidid: 0000-0002-1255-3118
  surname: Peng
  fullname: Peng, Lin
  email: penglin528@hotmail.com
  organization: Key laboratory of Microwave and Optical Wave Application Technology, Guilin University of Electronic Technology, Guilin, Guangxi, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0001-9515-7091
  surname: Shao
  fullname: Shao, Wei
  email: weishao@uestc.edu.cn
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNp9UD1PwzAQtRBIlI8dicUSc4rPjpN6DOVTVNABJLbIci5gCDbYLgh-PS5FDAxM793de3ent0XWnXdIyB6wMQBThzfNfMwZ52MBJRMg1sgIpJwUnHNYJyPGYFIoXt1tkq0YH3NZTspyRN4aR0_63hqLLtFL598H7O6xONIRO9qEZJczPdArXIRvSO8-PNHeB5oekB5jtPeO-p5ObTCLQYfhg859RvuZF4jiuJgH61LmM3SRNpk6p3fIRq-HiLs_uE1uT09upufF7PrsYtrMCsMVpKLsQTNlOpCohdD5_1pVIAQYVedmxcDUAjuphDRKKEAhleESTc1kJw0X2-Rgtfcl-NcFxtQ--kVw-WTLKyVBMjUps4qtVCb4GAP27Uuwzzp8tMDaZbptTrddptv-pJst1R-LsUkn610K2g7_GfdXRouIv3dUVdeqLsUXMQyHxA
CODEN IETPAK
CitedBy_id crossref_primary_10_1109_TAP_2022_3221613
crossref_primary_10_1007_s00521_024_10860_5
crossref_primary_10_1029_2023RS007912
crossref_primary_10_1109_LAWP_2025_3532623
crossref_primary_10_1109_TAP_2023_3331249
crossref_primary_10_1109_LMWT_2023_3329047
crossref_primary_10_1038_s41598_025_91643_3
crossref_primary_10_1109_TAP_2024_3503916
crossref_primary_10_1016_j_ymssp_2023_110282
crossref_primary_10_1063_5_0252990
crossref_primary_10_1109_TAP_2025_3534987
crossref_primary_10_1016_j_cjmeam_2023_100065
crossref_primary_10_1109_LAWP_2024_3378281
crossref_primary_10_1140_epjs_s11734_024_01347_4
crossref_primary_10_1109_LAWP_2024_3466248
crossref_primary_10_1109_TMTT_2023_3312978
crossref_primary_10_1016_j_aeue_2023_155068
crossref_primary_10_1109_TAP_2025_3542600
crossref_primary_10_1109_TAP_2024_3521222
crossref_primary_10_1109_LAWP_2024_3437436
crossref_primary_10_1109_TAP_2024_3384758
crossref_primary_10_32604_cmc_2023_037297
crossref_primary_10_1109_TAP_2024_3474913
crossref_primary_10_1109_TAP_2024_3373196
crossref_primary_10_1007_s10489_023_05200_4
crossref_primary_10_1109_TAP_2024_3388710
crossref_primary_10_1007_s10489_024_05853_9
crossref_primary_10_1109_TAP_2025_3552213
crossref_primary_10_1109_TAP_2023_3266051
crossref_primary_10_1109_LAWP_2024_3456838
Cites_doi 10.1109/LAWP.2015.2514065
10.1109/IJCNN.1992.227257
10.1109/TAP.2020.3026922
10.1109/TAP.2021.3069467
10.1109/TAP.2021.3069543
10.1109/8.1087
10.1109/LAWP.2016.2542211
10.1109/ACCESS.2020.3004895
10.1109/ACCESS.2020.2990157
10.1109/TAP.2018.2823775
10.1016/j.disopt.2020.100620
10.1109/LAWP.2014.2301844
10.1109/TAP.2016.2647693
10.1021/acsphotonics.0c00663
10.1109/MWSYM.1998.689312
10.1021/acsphotonics.7b01377
10.1038/s41598-018-29275-z
10.1109/TAP.2019.2902677
10.1109/TMTT.2018.2841889
10.1109/LAWP.2012.2213567
10.1109/ACCESS.2019.2930520
10.1109/TAP.2020.2972625
10.1109/TAP.2016.2537390
10.1021/acs.nanolett.8b03171
10.1109/TAP.2018.2869136
10.1109/LAWP.2015.2470128
10.1002/inf2.12116
10.1109/TAP.2019.2948492
10.1016/S1010-6030(01)00640-2
10.1109/TAP.2019.2951518
10.1109/LAWP.2021.3069713
10.1109/LAWP.2020.2969743
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2022.3140313
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 5014
ExternalDocumentID 10_1109_TAP_2022_3140313
9677974
Genre orig-research
GrantInformation_xml – fundername: Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology)
  grantid: CRKL190101
– fundername: Innovation Project of Guangxi Graduate Education
  grantid: YCSW2021178
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-4f1a09cd15ea33a9267961331c97d15601c73ed5935c9391e359c25ec705d5c23
IEDL.DBID RIE
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831273600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-926X
IngestDate Mon Jun 30 10:20:39 EDT 2025
Sat Nov 29 08:02:53 EST 2025
Tue Nov 18 20:48:39 EST 2025
Wed Aug 27 02:02:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4f1a09cd15ea33a9267961331c97d15601c73ed5935c9391e359c25ec705d5c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9515-7091
0000-0002-1255-3118
PQID 2695150984
PQPubID 85476
PageCount 8
ParticipantIDs ieee_primary_9677974
crossref_citationtrail_10_1109_TAP_2022_3140313
proquest_journals_2695150984
crossref_primary_10_1109_TAP_2022_3140313
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref25
ref20
ref21
Gupta (ref22) 2013; 3
ref28
ref27
ref29
ref8
ref7
Ioffe (ref26)
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref20
  doi: 10.1109/LAWP.2015.2514065
– ident: ref23
  doi: 10.1109/IJCNN.1992.227257
– ident: ref5
  doi: 10.1109/TAP.2020.3026922
– ident: ref11
  doi: 10.1109/TAP.2021.3069467
– ident: ref14
  doi: 10.1109/TAP.2021.3069543
– ident: ref4
  doi: 10.1109/8.1087
– ident: ref31
  doi: 10.1109/LAWP.2016.2542211
– ident: ref2
  doi: 10.1109/ACCESS.2020.3004895
– ident: ref9
  doi: 10.1109/ACCESS.2020.2990157
– ident: ref18
  doi: 10.1109/TAP.2018.2823775
– ident: ref24
  doi: 10.1016/j.disopt.2020.100620
– ident: ref3
  doi: 10.1109/LAWP.2014.2301844
– ident: ref7
  doi: 10.1109/TAP.2016.2647693
– volume: 3
  start-page: 24
  issue: 1
  year: 2013
  ident: ref22
  article-title: Artificial neural network
  publication-title: Netw. Complex Syst.
– ident: ref27
  doi: 10.1021/acsphotonics.0c00663
– ident: ref21
  doi: 10.1109/MWSYM.1998.689312
– ident: ref13
  doi: 10.1021/acsphotonics.7b01377
– ident: ref6
  doi: 10.1038/s41598-018-29275-z
– ident: ref34
  doi: 10.1109/TAP.2019.2902677
– ident: ref17
  doi: 10.1109/TMTT.2018.2841889
– ident: ref12
  doi: 10.1109/LAWP.2012.2213567
– ident: ref25
  doi: 10.1109/ACCESS.2019.2930520
– ident: ref8
  doi: 10.1109/TAP.2020.2972625
– ident: ref32
  doi: 10.1109/TAP.2016.2537390
– start-page: 448
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref26
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: ref16
  doi: 10.1021/acs.nanolett.8b03171
– ident: ref10
  doi: 10.1109/TAP.2018.2869136
– ident: ref15
  doi: 10.1109/LAWP.2015.2470128
– ident: ref28
  doi: 10.1002/inf2.12116
– ident: ref33
  doi: 10.1109/TAP.2019.2948492
– ident: ref29
  doi: 10.1016/S1010-6030(01)00640-2
– ident: ref30
  doi: 10.1109/TAP.2019.2951518
– ident: ref19
  doi: 10.1109/LAWP.2021.3069713
– ident: ref1
  doi: 10.1109/LAWP.2020.2969743
SSID ssj0014844
Score 2.557792
Snippet An efficient knowledge-based artificial neural network (KBANN) is proposed, and it is used for the design of circularly polarized (CP) lens antenna in this...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5007
SubjectTerms 3-D-printed
Antenna design
Antennas
Artificial neural networks
Circular polarization
circularly polarized~(CP) antenna
forward neural network (FNN)
High gain
inverse neural network (INN)
Lens antennas
Lenses
Mathematical models
Microstrip antennas
Neurons
Parameters
Performance indices
Predictive models
prior knowledge
Three dimensional printing
Training
Title An Efficient Knowledge-Based Artificial Neural Network for the Design of Circularly Polarized 3-D-Printed Lens Antenna
URI https://ieeexplore.ieee.org/document/9677974
https://www.proquest.com/docview/2695150984
Volume 70
WOSCitedRecordID wos000831273600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014844
  issn: 0018-926X
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH448aAHf4vTKTl4EYxrk7RpjlM3BGXsoLJbaZMMBqOTbhP0r_cl7YaiCJ7aQ14o_Zq-7yVfvgBcMG5sokRODZOaCmVjmnOR0AxTi8rzzFqv8n15lP1-MhyqwRpcrfbCWGu9-Mxeu1u_lm-meuGmytoqlhL5bwMaUspqr9ZqxUAkonJcDnEAs3i4XJIMVPupM8BCkDGsT4WzKvyWgvyZKj9-xD679Hb-91y7sF2zSNKpYN-DNVvsw9YXb8EDeOsUpOv9ITCWPCynzugNpi3jIyvvCOLsOfzF68EJkliCpJDceWkHmY7I7bj0YtXJOxm4Qnj8gR1wekcHpTObMOQRS2HScVr4IjuE51736fae1ocsUM1UOKdiFGaB0iaMbMZ5hq9OKkzxPNRKGrfNOtSSWxMpHmmEL7Q8UppFVssgMpFm_AjWi2lhj4EEuZbKxJkO41yMJDKhaGQFYyphuWBGNqG9fO-prh3I3UEYk9RXIoFKEanUIZXWSDXhchXxWrlv_NH2wCGzaleD0oTWEtq0Hp6zlMVILJEqJeLk96hT2HR9V7rcFqzPy4U9gw39Nh_PynP_5X0CNurU5w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTuMwFL1iYKSBBTA8RHl6MZuRxjR-xfGyvASiU3XRGXUXJbYrVUIpKgUJvp5rJ60YDUJilSxyk8gnzj3XPj4G-MGF85mRJXVcWyqNT2kpZEYLTC2mLAvvo8r3b1f3etlwaPpL8GuxFsZ7H8Vn_jScxrl8N7GPYaisbVKtkf9-gRUlJWf1aq3FnIHMZO25zLAL83Q4n5RMTHvQ6WMpyDlWqDKYFf6ThOKuKv_9imN-udr43JttwnrDI0mnBv47LPlqC9beuAtuw1OnIpfRIQJjye188IyeYeJyMbJ2jyDBoCMeoiKcII0lSAvJRRR3kMmInI-nUa5690z6oRQev-ANBL2g_Wmwm3Cki8Uw6QQ1fFXswJ-ry8H5NW22WaCWGzajcsSKxFjHlC-EKLDptMEkL5g12oWF1sxq4Z0yQlkEkHmhjOXKW50opywXu7BcTSq_ByQprTYuLSxLSznSyIXUyEvOTcZLyZ1uQXve7rltPMjDVhh3eaxFEpMjUnlAKm-QasHPRcR97b_xwbXbAZnFdQ0oLTicQ5s3HfQh5ylSSyRLmdx_P-oEvl0Pfnfz7k3v9gBWw3Nqle4hLM-mj_4Ivtqn2fhhehy_wldzfdgu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Knowledge-Based+Artificial+Neural+Network+for+the+Design+of+Circularly+Polarized+3-D-Printed+Lens+Antenna&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Liu%2C+Yan-Fang&rft.au=Peng%2C+Lin&rft.au=Shao%2C+Wei&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=0018-926X&rft.volume=70&rft.issue=7&rft.spage=5007&rft.epage=5014&rft_id=info:doi/10.1109%2FTAP.2022.3140313&rft.externalDocID=9677974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon