Optimal Causal Rate-Constrained Sampling of the Wiener Process

We consider the following communication scenario. An encoder causally observes the Wiener process and decides when and what to transmit about it. A decoder estimates the process using causally received codewords in real time. We determine the causal encoding and decoding policies that jointly minimi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 67; no. 4; pp. 1776 - 1791
Main Authors: Guo, Nian, Kostina, Victoria
Format: Journal Article
Language:English
Published: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9286, 1558-2523
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the following communication scenario. An encoder causally observes the Wiener process and decides when and what to transmit about it. A decoder estimates the process using causally received codewords in real time. We determine the causal encoding and decoding policies that jointly minimize the mean-square estimation error, under the long-term communication rate constraint of <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula> bits per second. We show that an optimal encoding policy can be implemented as a causal sampling policy followed by a causal compressing policy. We prove that the optimal encoding policy samples the Wiener process once the innovation passes either <inline-formula><tex-math notation="LaTeX">\sqrt{\frac{1}{R}}</tex-math></inline-formula> or <inline-formula><tex-math notation="LaTeX">-\sqrt{\frac{1}{R}}</tex-math></inline-formula> and compresses the sign of innovation (SOI) using a 1-bit codeword. The SOI coding scheme achieves the operational distortion-rate function, which is equal to <inline-formula><tex-math notation="LaTeX">D^{\mathrm{op}}(R)=\frac{1}{6R}</tex-math></inline-formula>. Surprisingly, this is significantly better than the distortion-rate tradeoff achieved in the limit of infinite delay by the best noncausal code. This is because the SOI coding scheme leverages the free timing information supplied by the zero-delay channel between the encoder and the decoder. The key to unlocking that gain is the event-triggered nature of the SOI sampling policy. In contrast, the distortion-rate tradeoffs achieved with deterministic sampling policies are much worse: we prove that the causal informational distortion-rate function in that scenario is as high as <inline-formula><tex-math notation="LaTeX">D_{\mathrm{DET}}(R) = \frac{5}{6R}</tex-math></inline-formula>. It is achieved by the uniform sampling policy with the sampling interval <inline-formula><tex-math notation="LaTeX">\frac{1}{R}</tex-math></inline-formula>. In either case, the optimal strategy is to sample the process as fast as possible and to transmit 1-bit codewords to the decoder without delay. We show that the SOI coding scheme also minimizes the mean-square cost of a continuous-time control system driven by the Wiener process and controlled via rate-constrained impulses.
AbstractList We consider the following communication scenario. An encoder causally observes the Wiener process and decides when and what to transmit about it. A decoder estimates the process using causally received codewords in real time. We determine the causal encoding and decoding policies that jointly minimize the mean-square estimation error, under the long-term communication rate constraint of [Formula Omitted] bits per second. We show that an optimal encoding policy can be implemented as a causal sampling policy followed by a causal compressing policy. We prove that the optimal encoding policy samples the Wiener process once the innovation passes either [Formula Omitted] or [Formula Omitted] and compresses the sign of innovation (SOI) using a 1-bit codeword. The SOI coding scheme achieves the operational distortion-rate function, which is equal to [Formula Omitted]. Surprisingly, this is significantly better than the distortion-rate tradeoff achieved in the limit of infinite delay by the best noncausal code. This is because the SOI coding scheme leverages the free timing information supplied by the zero-delay channel between the encoder and the decoder. The key to unlocking that gain is the event-triggered nature of the SOI sampling policy. In contrast, the distortion-rate tradeoffs achieved with deterministic sampling policies are much worse: we prove that the causal informational distortion-rate function in that scenario is as high as [Formula Omitted]. It is achieved by the uniform sampling policy with the sampling interval [Formula Omitted]. In either case, the optimal strategy is to sample the process as fast as possible and to transmit 1-bit codewords to the decoder without delay. We show that the SOI coding scheme also minimizes the mean-square cost of a continuous-time control system driven by the Wiener process and controlled via rate-constrained impulses.
We consider the following communication scenario. An encoder causally observes the Wiener process and decides when and what to transmit about it. A decoder estimates the process using causally received codewords in real time. We determine the causal encoding and decoding policies that jointly minimize the mean-square estimation error, under the long-term communication rate constraint of <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula> bits per second. We show that an optimal encoding policy can be implemented as a causal sampling policy followed by a causal compressing policy. We prove that the optimal encoding policy samples the Wiener process once the innovation passes either <inline-formula><tex-math notation="LaTeX">\sqrt{\frac{1}{R}}</tex-math></inline-formula> or <inline-formula><tex-math notation="LaTeX">-\sqrt{\frac{1}{R}}</tex-math></inline-formula> and compresses the sign of innovation (SOI) using a 1-bit codeword. The SOI coding scheme achieves the operational distortion-rate function, which is equal to <inline-formula><tex-math notation="LaTeX">D^{\mathrm{op}}(R)=\frac{1}{6R}</tex-math></inline-formula>. Surprisingly, this is significantly better than the distortion-rate tradeoff achieved in the limit of infinite delay by the best noncausal code. This is because the SOI coding scheme leverages the free timing information supplied by the zero-delay channel between the encoder and the decoder. The key to unlocking that gain is the event-triggered nature of the SOI sampling policy. In contrast, the distortion-rate tradeoffs achieved with deterministic sampling policies are much worse: we prove that the causal informational distortion-rate function in that scenario is as high as <inline-formula><tex-math notation="LaTeX">D_{\mathrm{DET}}(R) = \frac{5}{6R}</tex-math></inline-formula>. It is achieved by the uniform sampling policy with the sampling interval <inline-formula><tex-math notation="LaTeX">\frac{1}{R}</tex-math></inline-formula>. In either case, the optimal strategy is to sample the process as fast as possible and to transmit 1-bit codewords to the decoder without delay. We show that the SOI coding scheme also minimizes the mean-square cost of a continuous-time control system driven by the Wiener process and controlled via rate-constrained impulses.
Author Guo, Nian
Kostina, Victoria
Author_xml – sequence: 1
  givenname: Nian
  orcidid: 0000-0003-4490-328X
  surname: Guo
  fullname: Guo, Nian
  email: nguo@caltech.edu
  organization: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
– sequence: 2
  givenname: Victoria
  orcidid: 0000-0002-2406-7440
  surname: Kostina
  fullname: Kostina, Victoria
  email: vkostina@caltech.edu
  organization: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
BookMark eNp9kE1Lw0AQhhepYFu9C14CnlN39ivZi1CCX1CoaMXjsk0mmpJu4u724L83pcWDB08vA-8zwzwTMnKdQ0Iugc4AqL5ZzYsZowxmnGagJT8hY5AyT5lkfETGlEKeaparMzIJYTOMSggYk9tlH5utbZPC7sIQLzZiWnQuRG8bh1Xyard927iPpKuT-InJe4MOffLsuxJDOCentW0DXhxzSt7u71bFY7pYPjwV80VaMg0xFciV4pxllAOybK2p4qJCVBUIzqlcZyB0vuba1iAslcqWGWOA3AqwVcn4lFwf9va--9phiGbT7bwbThqmhGRSaqBDSx1ape9C8Fibsok2Np3bf9MaoGbvygyuzN6VOboaQPoH7P1gxX__h1wdkAYRf-uaa51pzX8AJMhztA
CODEN IETAA9
CitedBy_id crossref_primary_10_1007_s12555_023_0039_x
crossref_primary_10_1109_TAC_2024_3395477
crossref_primary_10_1109_TCOMM_2023_3277001
crossref_primary_10_1038_s41598_024_83641_8
crossref_primary_10_1145_3626791
crossref_primary_10_1109_TAC_2024_3419586
crossref_primary_10_1109_TIT_2021_3114142
crossref_primary_10_1109_TAC_2023_3308826
Cites_doi 10.1137/090757125
10.1109/TIT.1970.1054423
10.1109/ISIT44484.2020.9174333
10.1109/CDC.2014.7039920
10.1109/TAC.2019.2926160
10.1016/j.jfranklin.2018.05.041
10.1109/TAC.2016.2580589
10.1016/j.sysconle.2016.05.008
10.1109/CDC.2016.7798315
10.1016/j.ifacsc.2019.100064
10.1109/CDC.2006.377483
10.1109/CDC.2017.8264569
10.1093/oso/9780198572237.001.0001
10.1093/acprof:oso/9780198507840.001.0001
10.1109/TAC.2013.2254615
10.1109/JPROC.2006.887294
10.1109/CDC.2002.1184824
10.1109/TAC.2018.2828106
10.1109/TAC.2016.2601148
10.1109/TAC.2012.2215253
10.1109/ISIT.2017.8006542
10.1109/TAC.2019.2919107
10.1109/ALLERTON.2019.8919710
10.1109/TAC.2015.2480215
10.1137/17m1116349
10.1109/TAC.2017.2709914
10.3182/20100913-2-FR-4014.00003
10.1109/TAC.2011.2139370
10.1109/TAC.2017.2701005
10.1109/CDC.2015.7402467
10.1109/TIT.2018.2878446
10.1109/TIT.1970.1054469
10.1109/TAC.2016.2604921
10.1504/IJSCC.2010.031156
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2021.3071953
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 1791
ExternalDocumentID 10_1109_TAC_2021_3071953
9399799
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1751356
  funderid: 10.13039/501100008982
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-4e3663327031e27b90634dee6d143305b71498b39af14a056ac7221e3a41adc23
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776167500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Jun 30 10:20:32 EDT 2025
Sat Nov 29 05:41:02 EST 2025
Tue Nov 18 22:38:29 EST 2025
Wed Aug 27 02:36:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4e3663327031e27b90634dee6d143305b71498b39af14a056ac7221e3a41adc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2406-7440
0000-0003-4490-328X
PQID 2645255910
PQPubID 85475
PageCount 16
ParticipantIDs ieee_primary_9399799
crossref_citationtrail_10_1109_TAC_2021_3071953
proquest_journals_2645255910
crossref_primary_10_1109_TAC_2021_3071953
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
McLeish (ref37) 2005
ref22
Massey (ref30) 1990
ref21
ref28
ref27
Bensoussan (ref36) 1984
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1137/090757125
– ident: ref31
  doi: 10.1109/TIT.1970.1054423
– ident: ref35
  doi: 10.1109/ISIT44484.2020.9174333
– ident: ref6
  doi: 10.1109/CDC.2014.7039920
– ident: ref13
  doi: 10.1109/TAC.2019.2926160
– ident: ref24
  doi: 10.1016/j.jfranklin.2018.05.041
– ident: ref7
  doi: 10.1109/TAC.2016.2580589
– ident: ref22
  doi: 10.1016/j.sysconle.2016.05.008
– ident: ref23
  doi: 10.1109/CDC.2016.7798315
– ident: ref26
  doi: 10.1016/j.ifacsc.2019.100064
– ident: ref16
  doi: 10.1109/CDC.2006.377483
– ident: ref18
  doi: 10.1109/CDC.2017.8264569
– ident: ref29
  doi: 10.1093/oso/9780198572237.001.0001
– ident: ref33
  doi: 10.1093/acprof:oso/9780198507840.001.0001
– ident: ref9
  doi: 10.1109/TAC.2013.2254615
– ident: ref15
  doi: 10.1109/JPROC.2006.887294
– ident: ref1
  doi: 10.1109/CDC.2002.1184824
– ident: ref19
  doi: 10.1109/TAC.2018.2828106
– ident: ref28
  doi: 10.1109/TAC.2016.2601148
– ident: ref4
  doi: 10.1109/TAC.2012.2215253
– start-page: 303
  volume-title: Proc. Int. Symp. Inf. Theory its Appl.
  year: 1990
  ident: ref30
  article-title: Causality, feedback and directed information
– ident: ref10
  doi: 10.1109/ISIT.2017.8006542
– ident: ref20
  doi: 10.1109/TAC.2019.2919107
– ident: ref34
  doi: 10.1109/ALLERTON.2019.8919710
– ident: ref25
  doi: 10.1109/TAC.2015.2480215
– ident: ref32
  doi: 10.1137/17m1116349
– ident: ref12
  doi: 10.1109/TAC.2017.2709914
– ident: ref21
  doi: 10.3182/20100913-2-FR-4014.00003
– ident: ref3
  doi: 10.1109/TAC.2011.2139370
– ident: ref8
  doi: 10.1109/TAC.2017.2701005
– volume-title: Impulse Control and Quasi-Variational Inequalities
  year: 1984
  ident: ref36
– ident: ref11
  doi: 10.1109/CDC.2015.7402467
– ident: ref14
  doi: 10.1109/TIT.2018.2878446
– ident: ref27
  doi: 10.1109/TIT.1970.1054469
– volume-title: Monte Carlo Simulation and Finance
  year: 2005
  ident: ref37
– ident: ref17
  doi: 10.1109/TAC.2016.2604921
– ident: ref2
  doi: 10.1504/IJSCC.2010.031156
SSID ssj0016441
Score 2.4465108
Snippet We consider the following communication scenario. An encoder causally observes the Wiener process and decides when and what to transmit about it. A decoder...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1776
SubjectTerms Causal lossy source coding
Coders
Codes
Coding
Constraints
Continuous time systems
continuous-time tracking
Decoding
Delay
Delays
Distortion
Encoding
Estimation
Innovations
Linear systems
Policies
Process control
rate-distortion theory
Sampling
sequential estimation
Tradeoffs
Title Optimal Causal Rate-Constrained Sampling of the Wiener Process
URI https://ieeexplore.ieee.org/document/9399799
https://www.proquest.com/docview/2645255910
Volume 67
WOSCitedRecordID wos000776167500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM--DXF6ZQ--CKYbU27pnkRxnD4IFN04t5K0txkoJ3sw7_fS9oVRRF8aqEJhEvu7ne93O8AzlWkdRgKZEZ3AxZqEzDbpJAFJuJa0iedk7jeiuEwHo_lfQUuy1oYRHSXz7BlX10u38zSlf1V1pbkTYWUVagKEeW1WmXGwPr13OqSAvO4TEl2ZHvU61MgyP0WnWebNfrmglxPlR-G2HmXwc7_1rUL2wWK9Hr5tu9BBbN92PrCLViHqzsyBm80qK9WC3o8EKhktj2nawqBxntU9jJ59uLNJh6hQO95ahmovaJy4ACeBtej_g0rmiWwlEt_yUIMCDwE3PLRIxdaEvYIDWJkCBGRUmtBsVCsA6kmfqgI9qhUcO5joEJfmZQHh1DLZhkegRdhSoHOpCsRJe2VUpHwU0tqEwulOmbSgPZafklaMInbtb8mLqLoyIQknliJJ4XEG3BRznjPWTT-GFu3Ei7HFcJtQHO9RUmhZouEu7RslyDP8e-zTmCT23oFd9WmCbXlfIWnsJF-LKeL-Zk7QZ-veMES
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv6Y4P_vgi2C3Ns3a5UUYwzFxTtGJeytJc5OBbrIP_34vaVcURfCphSYQLrm73_VyvwM4k6FSnEfoalULXK504JomhW6gQ6YEfVIpiWsn6nbr_b64L8BFXguDiPbyGVbMq83l63EyN7_KqoK8aSTEEizXOGdeWq2V5wyMZ0_tLqkwq-dJSU9Ue40mhYLMr9CJNnmjb07IdlX5YYqtf2lt_m9lW7CR4UinkW78NhRwtAPrX9gFS3B5R-bgjQY15XxKjweCla5p0GnbQqB2HqW5Tj56ccYDh3Cg8zw0HNROVjuwC0-tq16z7WbtEtyECX_mcgwIPgTMMNIji5Qg9ME1YqgJE5Faq4iioboKhBz4XBLwkUnEmI-B5L7UCQv2oDgaj3AfnBATCnUGNYEoaLekDCM_MbQ29UhKTw_KUF3IL04yLnGz9tfYxhSeiEnisZF4nEm8DOf5jPeUR-OPsSUj4XxcJtwyHC22KM4UbRozm5itEeg5-H3WKay2e7eduHPdvTmENWaqF-zFmyMoziZzPIaV5GM2nE5O7Gn6BOl4xFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Causal+Rate-Constrained+Sampling+of+the+Wiener+Process&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Guo%2C+Nian&rft.au=Kostina%2C+Victoria&rft.date=2022-04-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=4&rft.spage=1776&rft.epage=1791&rft_id=info:doi/10.1109%2FTAC.2021.3071953&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2021_3071953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon