Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing
Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer l...
Uložené v:
| Vydané v: | IEEE transactions on industrial informatics Ročník 15; číslo 4; s. 2416 - 2425 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer learning (DTL) network based on sparse autoencoder (SAE) is presented. In the DTL method, three transfer strategies, that is, weight transfer, transfer learning of hidden feature, and weight update, are used to transfer an SAE trained by historical failure data to a new object. By these strategies, prediction of the new object without supervised information for training is achieved. Moreover, the learned features by deep transfer network for the new object share joint and similar characteristic to that of historical failure data, which is beneficial to accurate prediction. Case study on remaining useful life (RUL) prediction of cutting tool is performed to validate effectiveness of the DTL method. An SAE network is first trained by run-to-failure data with RUL information of a cutting tool in an off-line process. The trained network is then transferred to a new tool under operation for on-line RUL prediction. The prediction result with high accuracy shows advantage of the DTL method for RUL prediction. |
|---|---|
| AbstractList | Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer learning (DTL) network based on sparse autoencoder (SAE) is presented. In the DTL method, three transfer strategies, that is, weight transfer, transfer learning of hidden feature, and weight update, are used to transfer an SAE trained by historical failure data to a new object. By these strategies, prediction of the new object without supervised information for training is achieved. Moreover, the learned features by deep transfer network for the new object share joint and similar characteristic to that of historical failure data, which is beneficial to accurate prediction. Case study on remaining useful life (RUL) prediction of cutting tool is performed to validate effectiveness of the DTL method. An SAE network is first trained by run-to-failure data with RUL information of a cutting tool in an off-line process. The trained network is then transferred to a new tool under operation for on-line RUL prediction. The prediction result with high accuracy shows advantage of the DTL method for RUL prediction. |
| Author | Tian, Shaohua Ma, Meng Zhao, Zhibin Sun, Chuang Yan, Ruqiang Chen, Xuefeng |
| Author_xml | – sequence: 1 givenname: Chuang surname: Sun fullname: Sun, Chuang email: ch.sun@xjtu.edu.cn organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 2 givenname: Meng surname: Ma fullname: Ma, Meng email: Mameng_m@126.com organization: Department of Mechanical Engineering, University of Massachusetts Lowell, MA, USA – sequence: 3 givenname: Zhibin orcidid: 0000-0003-4180-7137 surname: Zhao fullname: Zhao, Zhibin email: zhaozhibin@stu.xjtu.edu.cn organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 4 givenname: Shaohua surname: Tian fullname: Tian, Shaohua email: tianshaohua2015@xjtu.edu.cn organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 5 givenname: Ruqiang surname: Yan fullname: Yan, Ruqiang email: yanruqiang@xjtu.edu.cn organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 6 givenname: Xuefeng orcidid: 0000-0002-0130-3172 surname: Chen fullname: Chen, Xuefeng email: chenxf@mail.xjtu.edu.cn organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China |
| BookMark | eNp9kLlOAzEQQC0UJAjQI9FYot7gaw-XIVyRgkAQ6pVjj5GjYC_2bsHf45CIgoJqXLzn0bwxGvngAaFzSiaUEnm1nM8njNBmwpqGloIfoGMqBS0IKckov8uSFpwRfoTGKa0J4TXh8hh1NwAdXkblk4WIF6Cid_4dX6sEBgePXzsVE-Dp0AfwOpgM2RDxC3wo90O-JbDDBi-cBfwcwTjdu-wFi5chbLDz-FH5wSrdDzHzp-jQqk2Cs_08QW93t8vZQ7F4up_PpotCM0n7QgATFZMGTE1B1FrzStlKr1Y1NStDtWxqU1ZSEUMNbbSGWgpR0YZZVjJhFT9Bl7t_uxg-B0h9uw5D9Hlly3IGQTiXIlNkR-kYUopg2y66DxW_Wkrabdc2d223Xdt916xUfxTterW9uY_Kbf4TL3aiA4DfPU0pCKk5_wZK3oeK |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2943076 crossref_primary_10_1109_TIM_2022_3162283 crossref_primary_10_1016_j_jprocont_2025_103408 crossref_primary_10_1016_j_ese_2025_100604 crossref_primary_10_1016_j_procir_2020_02_048 crossref_primary_10_1109_TII_2024_3405634 crossref_primary_10_1016_j_engappai_2023_105837 crossref_primary_10_1016_j_ymssp_2021_108487 crossref_primary_10_1007_s10489_022_04342_1 crossref_primary_10_1016_j_measurement_2021_109273 crossref_primary_10_1016_j_neunet_2021_04_003 crossref_primary_10_3233_JIFS_236636 crossref_primary_10_1016_j_jmapro_2024_06_010 crossref_primary_10_1016_j_isatra_2023_01_013 crossref_primary_10_1109_TTE_2022_3229716 crossref_primary_10_3390_s22124549 crossref_primary_10_1109_ACCESS_2021_3116813 crossref_primary_10_1109_TSMC_2022_3218536 crossref_primary_10_1016_j_jmsy_2025_05_012 crossref_primary_10_1109_TMECH_2020_3025615 crossref_primary_10_1109_TII_2022_3158615 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_1088_1361_6501_adda70 crossref_primary_10_1016_j_eswa_2023_120066 crossref_primary_10_1016_j_ress_2021_107583 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_1016_j_asoc_2022_108507 crossref_primary_10_1016_j_cie_2022_108521 crossref_primary_10_1016_j_knosys_2022_109537 crossref_primary_10_1016_j_jmsy_2021_05_015 crossref_primary_10_1007_s00170_022_09909_3 crossref_primary_10_1007_s00170_023_11617_5 crossref_primary_10_1007_s10462_025_11343_2 crossref_primary_10_1007_s44163_022_00022_8 crossref_primary_10_1016_j_jmapro_2025_05_054 crossref_primary_10_1109_TII_2023_3299623 crossref_primary_10_3390_math9172039 crossref_primary_10_3390_s21206772 crossref_primary_10_1109_TIM_2023_3289564 crossref_primary_10_1016_j_eswa_2023_119886 crossref_primary_10_1109_JSEN_2021_3133622 crossref_primary_10_1007_s00170_019_04788_7 crossref_primary_10_1109_TMECH_2021_3098737 crossref_primary_10_1016_j_ymssp_2024_111924 crossref_primary_10_1080_09507116_2025_2539827 crossref_primary_10_1109_TII_2022_3205373 crossref_primary_10_1016_j_ifacol_2024_09_190 crossref_primary_10_1016_j_knosys_2019_105297 crossref_primary_10_1016_j_jmapro_2021_05_046 crossref_primary_10_1016_j_mtcomm_2023_107357 crossref_primary_10_1016_j_ymssp_2022_109608 crossref_primary_10_1007_s40684_025_00759_4 crossref_primary_10_1109_ACCESS_2020_3010378 crossref_primary_10_1109_TIE_2020_3003649 crossref_primary_10_1016_j_energy_2022_124857 crossref_primary_10_3390_s24010188 crossref_primary_10_1002_eqe_3856 crossref_primary_10_1109_ACCESS_2021_3117002 crossref_primary_10_1016_j_ymssp_2024_112251 crossref_primary_10_1109_JSEN_2023_3248323 crossref_primary_10_1016_j_jmsy_2020_11_016 crossref_primary_10_1109_TIM_2024_3451591 crossref_primary_10_1007_s11227_022_04827_3 crossref_primary_10_1016_j_jmsy_2020_11_019 crossref_primary_10_1016_j_measurement_2023_112900 crossref_primary_10_1109_TIM_2021_3116309 crossref_primary_10_1109_TTE_2024_3354107 crossref_primary_10_1016_j_aei_2024_103038 crossref_primary_10_1109_TII_2021_3116145 crossref_primary_10_1016_j_jmsy_2021_02_015 crossref_primary_10_1016_j_cie_2025_111193 crossref_primary_10_3390_s22062206 crossref_primary_10_1109_TII_2020_3000204 crossref_primary_10_1109_JSEN_2020_2975286 crossref_primary_10_1007_s11042_022_12597_6 crossref_primary_10_1016_j_isatra_2020_06_005 crossref_primary_10_1109_ACCESS_2022_3226780 crossref_primary_10_1016_j_measurement_2021_110276 crossref_primary_10_1109_TIM_2025_3548779 crossref_primary_10_1016_j_ijmachtools_2024_104209 crossref_primary_10_1016_j_measurement_2021_110393 crossref_primary_10_1109_TIM_2019_2923829 crossref_primary_10_1109_ACCESS_2023_3267960 crossref_primary_10_1016_j_conengprac_2024_106098 crossref_primary_10_3390_w12071929 crossref_primary_10_1109_ACCESS_2024_3406262 crossref_primary_10_1109_TIE_2021_3050382 crossref_primary_10_1109_TR_2020_3010970 crossref_primary_10_1109_TASE_2023_3294811 crossref_primary_10_1109_TIM_2023_3264027 crossref_primary_10_1016_j_measurement_2022_111644 crossref_primary_10_1016_j_optlastec_2025_112617 crossref_primary_10_3390_app13053307 crossref_primary_10_1109_TII_2019_2912428 crossref_primary_10_1016_j_ymssp_2023_110435 crossref_primary_10_1016_j_engappai_2024_108285 crossref_primary_10_1016_j_jmatprotec_2022_117531 crossref_primary_10_1007_s10489_021_02686_8 crossref_primary_10_1016_j_jmapro_2023_05_067 crossref_primary_10_1177_1475921720933155 crossref_primary_10_1002_cjce_25701 crossref_primary_10_1007_s10462_022_10230_4 crossref_primary_10_1016_j_measurement_2021_110383 crossref_primary_10_1016_j_ymssp_2022_110010 crossref_primary_10_1109_TII_2024_3399882 crossref_primary_10_1109_TMECH_2020_3004589 crossref_primary_10_1177_01423312241257297 crossref_primary_10_1007_s40684_021_00327_6 crossref_primary_10_1109_TII_2024_3403253 crossref_primary_10_1016_j_neucom_2021_07_080 crossref_primary_10_1109_TII_2022_3190554 crossref_primary_10_1016_j_jmapro_2024_12_039 crossref_primary_10_1007_s11704_022_1349_5 crossref_primary_10_1016_j_rcim_2022_102441 crossref_primary_10_1016_j_jmsy_2025_04_002 crossref_primary_10_1186_s10033_020_00459_x crossref_primary_10_1109_TNNLS_2022_3151646 crossref_primary_10_1109_ACCESS_2023_3239784 crossref_primary_10_1109_TIM_2021_3075016 crossref_primary_10_1016_j_measurement_2022_111439 crossref_primary_10_1016_j_ress_2025_111094 crossref_primary_10_1007_s00521_022_08017_3 crossref_primary_10_1007_s44245_024_00059_2 crossref_primary_10_1016_j_comnet_2021_107819 crossref_primary_10_1109_ACCESS_2025_3551772 crossref_primary_10_1109_TII_2019_2926372 crossref_primary_10_1016_j_procir_2023_06_021 crossref_primary_10_1016_j_knosys_2023_111158 crossref_primary_10_1109_TIE_2021_3060675 crossref_primary_10_1007_s11063_021_10719_z crossref_primary_10_1109_TIE_2021_3057030 crossref_primary_10_1109_TII_2020_2988208 crossref_primary_10_1109_TPWRS_2021_3071918 crossref_primary_10_1016_j_epsr_2021_107363 crossref_primary_10_1109_TIM_2023_3304687 crossref_primary_10_3390_machines13090789 crossref_primary_10_1016_j_neucom_2020_11_070 crossref_primary_10_3390_s22114161 crossref_primary_10_1007_s00170_021_07325_7 crossref_primary_10_1007_s12541_023_00924_2 crossref_primary_10_1109_TMECH_2023_3325538 crossref_primary_10_1109_TIM_2021_3057498 crossref_primary_10_1016_j_cirp_2020_05_002 crossref_primary_10_1016_j_aei_2024_102566 crossref_primary_10_1109_TIM_2021_3072670 crossref_primary_10_1016_j_ress_2023_109456 crossref_primary_10_3390_app142210625 crossref_primary_10_1016_j_neucom_2020_04_045 crossref_primary_10_1016_j_ress_2021_107556 crossref_primary_10_1109_TIM_2019_2958010 crossref_primary_10_1016_j_ress_2023_109695 crossref_primary_10_1016_j_ymssp_2018_12_008 crossref_primary_10_1016_j_knosys_2022_110199 crossref_primary_10_1177_16878132251339857 crossref_primary_10_1109_TIM_2020_3042300 crossref_primary_10_3390_s20174676 crossref_primary_10_1080_17445302_2025_2537939 crossref_primary_10_1109_JSEN_2025_3540781 crossref_primary_10_1007_s10845_024_02386_3 crossref_primary_10_1016_j_measurement_2022_112421 crossref_primary_10_3390_app11062761 crossref_primary_10_7717_peerj_cs_690 crossref_primary_10_1007_s12206_024_0402_8 crossref_primary_10_1016_j_aei_2024_102659 crossref_primary_10_1080_21693277_2024_2305358 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1109_TII_2019_2899118 crossref_primary_10_1088_1361_6501_ace4e4 crossref_primary_10_1109_ACCESS_2025_3551798 crossref_primary_10_1109_TII_2022_3229493 crossref_primary_10_1109_TNNLS_2022_3213009 crossref_primary_10_1109_TII_2021_3092361 crossref_primary_10_1016_j_apacoust_2022_108703 crossref_primary_10_1109_ACCESS_2023_3322733 crossref_primary_10_1109_TIM_2022_3159010 crossref_primary_10_1109_TII_2021_3056867 crossref_primary_10_1016_j_jmapro_2024_05_050 crossref_primary_10_1109_TSMC_2024_3358567 crossref_primary_10_3390_s23239535 crossref_primary_10_1016_j_engappai_2025_110180 crossref_primary_10_1016_j_jmsy_2023_09_011 crossref_primary_10_1109_TAES_2024_3502354 crossref_primary_10_3390_electronics11152364 crossref_primary_10_1016_j_engappai_2025_110059 crossref_primary_10_1016_j_jmsy_2024_06_004 crossref_primary_10_1016_j_ymssp_2022_109628 crossref_primary_10_1016_j_ymssp_2023_110239 crossref_primary_10_1109_JIOT_2024_3419044 crossref_primary_10_3390_s24072135 crossref_primary_10_3390_machines10020072 crossref_primary_10_1109_TIM_2021_3096283 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_1109_TASE_2020_2971512 crossref_primary_10_1007_s00170_024_14273_5 crossref_primary_10_1007_s10845_021_01814_y crossref_primary_10_1016_j_cie_2023_109605 crossref_primary_10_1016_j_compeleceng_2023_108949 crossref_primary_10_1016_j_engappai_2022_105712 crossref_primary_10_1109_TIM_2022_3164063 crossref_primary_10_1109_TFUZZ_2023_3298147 crossref_primary_10_1002_stc_2651 crossref_primary_10_1109_TII_2020_3005965 crossref_primary_10_1016_j_neucom_2023_126520 crossref_primary_10_1016_j_ress_2021_108278 crossref_primary_10_1016_j_rcim_2022_102368 crossref_primary_10_1016_j_tej_2020_106881 crossref_primary_10_1088_1361_6501_abead1 crossref_primary_10_1088_1361_6501_ad086a crossref_primary_10_1016_j_eswa_2025_127770 crossref_primary_10_1109_TII_2022_3180389 crossref_primary_10_1109_TIE_2020_3044808 crossref_primary_10_1177_14759217251329485 crossref_primary_10_1109_ACCESS_2020_3036912 crossref_primary_10_1016_j_measurement_2023_113387 crossref_primary_10_3390_machines11010094 crossref_primary_10_1016_j_engappai_2022_105149 crossref_primary_10_1016_j_engstruct_2024_118352 crossref_primary_10_3390_e27010079 crossref_primary_10_1016_j_measurement_2024_115026 crossref_primary_10_1007_s00170_021_07784_y crossref_primary_10_1016_j_ress_2021_107878 crossref_primary_10_1007_s00170_024_13713_6 crossref_primary_10_1016_j_isatra_2024_08_012 crossref_primary_10_3390_s25175465 crossref_primary_10_1016_j_ress_2021_107871 crossref_primary_10_1109_TII_2023_3262856 crossref_primary_10_1088_1361_6501_ac84f8 crossref_primary_10_1016_j_jmsy_2024_05_021 crossref_primary_10_1016_j_jmsy_2024_01_009 crossref_primary_10_1016_j_jmsy_2024_01_008 crossref_primary_10_1016_j_cja_2021_04_001 crossref_primary_10_1109_TIM_2021_3064810 crossref_primary_10_1109_TAI_2021_3097311 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_3390_machines10080639 crossref_primary_10_1016_j_asoc_2022_108934 crossref_primary_10_1109_JSEN_2021_3119151 crossref_primary_10_1016_j_measurement_2020_108286 crossref_primary_10_1109_TII_2021_3126309 crossref_primary_10_1016_j_knosys_2021_108110 crossref_primary_10_1109_ACCESS_2019_2939876 crossref_primary_10_1109_JSEN_2020_2980596 crossref_primary_10_1002_int_22493 crossref_primary_10_1109_TIM_2020_3033457 crossref_primary_10_1109_JIOT_2024_3456906 crossref_primary_10_1109_TASE_2024_3366288 crossref_primary_10_1016_j_isatra_2020_09_017 crossref_primary_10_3390_s20102878 crossref_primary_10_1109_TIM_2021_3071350 crossref_primary_10_1016_j_engappai_2024_108575 crossref_primary_10_1016_j_inffus_2024_102601 crossref_primary_10_1109_TII_2020_2991796 crossref_primary_10_1109_TIE_2020_3040669 crossref_primary_10_1016_j_ress_2022_108651 crossref_primary_10_1109_TII_2020_3014422 crossref_primary_10_1007_s12206_022_0102_1 crossref_primary_10_1109_TII_2020_2964117 crossref_primary_10_1016_j_cie_2024_110106 crossref_primary_10_1007_s10845_023_02088_2 crossref_primary_10_1088_1361_6501_ad8940 crossref_primary_10_1108_IJQRM_11_2022_0318 crossref_primary_10_1016_j_wear_2021_203902 crossref_primary_10_1109_TITS_2025_3551830 crossref_primary_10_1007_s11831_023_09979_w crossref_primary_10_1016_j_ultras_2023_106931 crossref_primary_10_1016_j_measurement_2023_112879 crossref_primary_10_1088_1361_6501_ac2fe8 crossref_primary_10_1109_TII_2024_3495779 crossref_primary_10_1109_TII_2022_3154789 crossref_primary_10_1016_j_measurement_2022_110719 crossref_primary_10_1016_j_ymssp_2020_107293 crossref_primary_10_1109_JSEN_2023_3244587 crossref_primary_10_1016_j_ress_2025_111106 crossref_primary_10_1109_TII_2019_2900295 crossref_primary_10_1016_j_ymssp_2025_112498 crossref_primary_10_1109_TII_2020_3045392 crossref_primary_10_3390_bs15070873 crossref_primary_10_1016_j_engappai_2023_106845 crossref_primary_10_1109_TIM_2022_3221142 crossref_primary_10_1109_ACCESS_2021_3140165 crossref_primary_10_1016_j_engappai_2021_104383 crossref_primary_10_1039_D2EE01676A crossref_primary_10_1007_s00521_023_08883_5 crossref_primary_10_1016_j_compind_2023_103989 crossref_primary_10_1016_j_isatra_2021_04_022 crossref_primary_10_1016_j_ress_2021_107946 crossref_primary_10_1109_TMECH_2021_3094986 crossref_primary_10_1016_j_jmsy_2024_04_001 crossref_primary_10_1016_j_engappai_2024_109716 crossref_primary_10_3390_s21206841 crossref_primary_10_1109_JSEN_2021_3061109 crossref_primary_10_1049_hve2_12034 crossref_primary_10_1109_TII_2022_3176891 crossref_primary_10_3390_s23083894 crossref_primary_10_1080_24725854_2023_2222402 crossref_primary_10_1016_j_measurement_2022_110748 crossref_primary_10_1016_j_ymssp_2023_110644 crossref_primary_10_3390_app10196916 crossref_primary_10_1109_TII_2021_3088057 crossref_primary_10_1016_j_ress_2022_108357 crossref_primary_10_1109_TCPMT_2020_3043011 crossref_primary_10_1007_s00170_025_16337_6 crossref_primary_10_1088_1361_6501_ac5874 crossref_primary_10_1007_s10489_021_02441_z crossref_primary_10_1109_TIE_2021_3066933 crossref_primary_10_1007_s40436_022_00415_z crossref_primary_10_1109_TNNLS_2021_3085869 crossref_primary_10_1109_MIE_2020_3034884 crossref_primary_10_1007_s10845_021_01804_0 crossref_primary_10_1109_JSYST_2020_2986162 crossref_primary_10_1016_j_ijepes_2021_106965 crossref_primary_10_1016_j_knosys_2021_107216 crossref_primary_10_1109_TSMC_2020_3048950 crossref_primary_10_1016_j_neucom_2020_09_017 crossref_primary_10_1007_s00170_021_06780_6 crossref_primary_10_1186_s10033_021_00570_7 crossref_primary_10_1109_TDEI_2024_3469913 crossref_primary_10_1109_ACCESS_2025_3556251 crossref_primary_10_1088_1361_6501_aca115 crossref_primary_10_3390_machines12100728 crossref_primary_10_1016_j_ymssp_2021_108068 crossref_primary_10_1016_j_knosys_2025_114259 crossref_primary_10_1016_j_jmsy_2023_06_004 crossref_primary_10_1016_j_engappai_2024_109037 crossref_primary_10_1155_2022_7863972 crossref_primary_10_1007_s00170_025_15007_x crossref_primary_10_1016_j_procir_2025_08_042 crossref_primary_10_1016_j_ymssp_2024_111444 crossref_primary_10_1016_j_ress_2020_107098 crossref_primary_10_1109_ACCESS_2023_3349132 crossref_primary_10_3390_jmse12111977 crossref_primary_10_1109_TII_2019_2917233 crossref_primary_10_1007_s10845_024_02382_7 crossref_primary_10_1007_s40436_025_00564_x crossref_primary_10_1109_TIM_2022_3200106 crossref_primary_10_3390_s21124043 crossref_primary_10_1007_s11063_022_10978_4 crossref_primary_10_1016_j_isatra_2021_05_007 crossref_primary_10_1109_TCYB_2020_2988277 crossref_primary_10_1016_j_measurement_2022_112028 crossref_primary_10_1109_TIM_2020_3031113 crossref_primary_10_1109_TCYB_2021_3059002 crossref_primary_10_1109_TII_2020_3041830 crossref_primary_10_1002_qre_3757 crossref_primary_10_1007_s10845_023_02264_4 crossref_primary_10_1155_2022_7674421 crossref_primary_10_3390_s23239494 crossref_primary_10_1109_TII_2023_3342885 crossref_primary_10_1016_j_knosys_2021_106925 crossref_primary_10_1080_24725854_2023_2242434 crossref_primary_10_1109_TII_2022_3206339 crossref_primary_10_3390_s24113454 crossref_primary_10_1016_j_ress_2025_111039 crossref_primary_10_1109_TII_2022_3172704 crossref_primary_10_1016_j_jmapro_2023_01_054 crossref_primary_10_1109_TII_2020_2976752 crossref_primary_10_1088_1361_6501_ac9078 crossref_primary_10_1016_j_ress_2025_110850 crossref_primary_10_1109_TII_2024_3352269 crossref_primary_10_1016_j_measurement_2023_113885 crossref_primary_10_3390_s20010109 crossref_primary_10_1109_TPEL_2021_3117788 crossref_primary_10_1109_TII_2024_3400299 crossref_primary_10_3390_app11115011 crossref_primary_10_1016_j_compstruct_2024_118139 crossref_primary_10_1016_j_ymssp_2022_109598 crossref_primary_10_1109_JSEN_2020_2979797 crossref_primary_10_1016_j_ress_2022_108444 crossref_primary_10_1088_1361_6501_ad2bcc crossref_primary_10_1177_09544054221124476 crossref_primary_10_1016_j_measurement_2021_109359 crossref_primary_10_1109_JIOT_2023_3243401 crossref_primary_10_1088_1361_6501_adeeb5 |
| Cites_doi | 10.1016/j.ymssp.2006.07.014 10.1016/j.jmsy.2018.04.008 10.1109/TIE.2017.2733438 10.1109/TII.2018.2864759 10.1016/j.asoc.2017.12.042 10.1016/j.ymssp.2016.02.007 10.1007/s10845-013-0774-6 10.1016/j.measurement.2014.01.024 10.1109/TIE.2018.2844856 10.1109/TIE.2004.824875 10.1109/TII.2015.2475219 10.1177/0954406215621585 10.1109/TII.2018.2868687 10.1016/j.jmsy.2018.01.003 10.1016/j.ymssp.2018.04.044 10.1016/j.ymssp.2017.11.021 10.1016/j.ymssp.2005.11.008 10.1016/j.procir.2016.01.002 10.1016/j.procir.2018.03.262 10.1007/s00170-016-9711-0 10.1109/TII.2016.2643693 10.1109/ACCESS.2017.2728010 10.1049/iet-rpg.2016.0236 10.1109/ACCESS.2018.2837621 10.1109/TPAMI.2013.50 10.1109/TII.2016.2535368 10.1109/TIE.2017.2762639 10.1109/TIE.2017.2733487 10.1109/TII.2017.2723943 10.1109/TIE.2015.2455055 10.1109/TII.2017.2672988 10.1177/0954406215590167 10.1109/TIE.2010.2098369 10.1109/SMC.2014.6974107 10.1109/TIE.2017.2745473 10.1109/TIM.2017.2669947 10.1115/1.4036350 10.1016/j.ymssp.2017.11.022 10.1016/j.cirp.2017.04.013 10.1016/j.ymssp.2016.06.012 10.1016/j.procs.2018.01.106 10.1109/TIM.2017.2674738 10.1109/TII.2018.2793246 10.1109/TSMC.2017.2754287 10.1109/TII.2018.2819674 10.1007/s10845-015-1155-0 10.1016/j.ymssp.2015.10.025 10.1016/j.ymssp.2011.03.001 10.3390/s121012964 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2018.2881543 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 2425 |
| ExternalDocumentID | 10_1109_TII_2018_2881543 8540073 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research Development Program of China grantid: 2016YFF0104000; TII-18-1069 – fundername: Postdoctoral Science Foundation of China grantid: 2017M613117 – fundername: Absorb Outcome Transformation Project of Science and Technology Department in Shaanxi Province of China grantid: 2017CGZH-XNGJ-02 – fundername: National Natural Science Foundation of China; Natural Science Foundation of China grantid: 51705398; 51835009 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c291t-4e24629ded71e47cc36af6cbb71dbd1c987d569a0d1d18cce79446182f2524fa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 426 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467095500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:21:22 EDT 2025 Sat Nov 29 04:40:30 EST 2025 Tue Nov 18 22:33:40 EST 2025 Wed Aug 27 02:44:40 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-4e24629ded71e47cc36af6cbb71dbd1c987d569a0d1d18cce79446182f2524fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4180-7137 0000-0002-0130-3172 |
| PQID | 2203403394 |
| PQPubID | 85507 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8540073 crossref_citationtrail_10_1109_TII_2018_2881543 crossref_primary_10_1109_TII_2018_2881543 proquest_journals_2203403394 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref52 ref11 ref10 ref17 ref16 ref19 ref18 hinchi (ref41) 2018; 127 ref51 ref50 yu (ref15) 2017; 91 ref45 ref48 ref42 ref44 ref43 ref49 ref8 ref4 ref3 ref6 ref5 ref40 ref35 rao (ref9) 2014; 51 ref34 ref37 ref36 ref31 ref30 kurek (ref46) 0; 10225 ref33 ref32 ref2 ref1 ref39 ref38 zhang (ref47) 2017 cai (ref7) 2012; 12 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 zhang (ref14) 2016; 29 |
| References_xml | – ident: ref52 doi: 10.1016/j.ymssp.2006.07.014 – ident: ref40 doi: 10.1016/j.jmsy.2018.04.008 – ident: ref48 doi: 10.1109/TIE.2017.2733438 – ident: ref43 doi: 10.1109/TII.2018.2864759 – ident: ref17 doi: 10.1016/j.asoc.2017.12.042 – ident: ref2 doi: 10.1016/j.ymssp.2016.02.007 – ident: ref12 doi: 10.1007/s10845-013-0774-6 – volume: 51 start-page: 63 year: 2014 ident: ref9 article-title: Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network publication-title: Meas doi: 10.1016/j.measurement.2014.01.024 – ident: ref38 doi: 10.1109/TIE.2018.2844856 – ident: ref24 doi: 10.1109/TIE.2004.824875 – ident: ref1 doi: 10.1109/TII.2015.2475219 – ident: ref27 doi: 10.1177/0954406215621585 – ident: ref39 doi: 10.1109/TII.2018.2868687 – ident: ref28 doi: 10.1016/j.jmsy.2018.01.003 – ident: ref3 doi: 10.1016/j.ymssp.2018.04.044 – ident: ref16 doi: 10.1016/j.ymssp.2017.11.021 – ident: ref25 doi: 10.1016/j.ymssp.2005.11.008 – ident: ref13 doi: 10.1016/j.procir.2016.01.002 – ident: ref42 doi: 10.1016/j.procir.2018.03.262 – volume: 91 start-page: 201 year: 2017 ident: ref15 article-title: A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-016-9711-0 – ident: ref22 doi: 10.1109/TII.2016.2643693 – ident: ref31 doi: 10.1109/ACCESS.2017.2728010 – ident: ref4 doi: 10.1049/iet-rpg.2016.0236 – year: 2017 ident: ref47 article-title: Particle learning and gated recurrent neural network for online tool wear diagnosis and prognosis – ident: ref44 doi: 10.1109/ACCESS.2018.2837621 – ident: ref49 doi: 10.1109/TPAMI.2013.50 – ident: ref19 doi: 10.1109/TII.2016.2535368 – ident: ref37 doi: 10.1109/TIE.2017.2762639 – volume: 29 start-page: 76 year: 2016 ident: ref14 article-title: Modelling and prediction of tool wear using LS-SVM in milling operation publication-title: Int J Comput Integr Manuf – ident: ref21 doi: 10.1109/TIE.2017.2733487 – ident: ref8 doi: 10.1109/TII.2017.2723943 – ident: ref20 doi: 10.1109/TIE.2015.2455055 – ident: ref34 doi: 10.1109/TII.2017.2672988 – ident: ref26 doi: 10.1177/0954406215590167 – ident: ref23 doi: 10.1109/TIE.2010.2098369 – ident: ref51 doi: 10.1109/SMC.2014.6974107 – ident: ref36 doi: 10.1109/TIE.2017.2745473 – ident: ref32 doi: 10.1109/TIM.2017.2669947 – ident: ref18 doi: 10.1115/1.4036350 – ident: ref11 doi: 10.1016/j.ymssp.2017.11.022 – volume: 10225 start-page: 1 year: 0 ident: ref46 article-title: Deep learning in assessment of drill condition on the basis of images of drilled holes publication-title: Proc 8th Int Conf Graph Image Process – ident: ref45 doi: 10.1016/j.cirp.2017.04.013 – ident: ref5 doi: 10.1016/j.ymssp.2016.06.012 – volume: 127 start-page: 123 year: 2018 ident: ref41 article-title: Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.01.106 – ident: ref35 doi: 10.1109/TIM.2017.2674738 – ident: ref33 doi: 10.1109/TII.2018.2793246 – ident: ref50 doi: 10.1109/TSMC.2017.2754287 – ident: ref29 doi: 10.1109/TII.2018.2819674 – ident: ref10 doi: 10.1007/s10845-015-1155-0 – ident: ref30 doi: 10.1016/j.ymssp.2015.10.025 – ident: ref6 doi: 10.1016/j.ymssp.2011.03.001 – volume: 12 start-page: 12964 year: 2012 ident: ref7 article-title: Operation reliability assessment for cutting tools by applying a proportional covariate model to condition monitoring information publication-title: SENSORS doi: 10.3390/s121012964 |
| SSID | ssj0037039 |
| Score | 2.660519 |
| Snippet | Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2416 |
| SubjectTerms | Cutting tools Deep learning deep transfer learning (DTL) Failure Fault diagnosis Feature extraction Hidden Markov models Life prediction Machine learning Maintenance management Monitoring Predictive models remaining useful life (RUL) prediction sparse autoencoder (SAE) Tool life transfer learning Useful life Weight |
| Title | Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing |
| URI | https://ieeexplore.ieee.org/document/8540073 https://www.proquest.com/docview/2203403394 |
| Volume | 15 |
| WOSCitedRecordID | wos000467095500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4QKEgFkrlAxck0k1sx49jgVatBFUFW6m3KLHH1UpLstrd8PsZO9kVCITELYexFeUbz8wXzwPgbbSKSrgiC0LJTAoZssbUMU2MTKbnIpS6TsMm9PW1ubuzN3vwflcLg4gp-QxP42O6y_ed6-Ovsqkp4xRvsQ_7WquhVmtrdQVprk29UcsiEzwX2yvJ3E5nV1cxh8uccmMoYhC_uaA0U-UPQ5y8y8WT_3uvQ3g8RpHsbID9Kexh-wwe_dJb8AiWnxCXLLmigCs29lG9Zx_IbXnWtezbkjgtsrN-08Vmlp6EKIBlX_H7MDSC3a4x9Av2eR6Q3azihU4EkXWBzbpuweYt-1K3fayMSKWOz-H24nz28TIbxytkjttik0nkUnHr0esCpXZOqDoo1zS68I0vnDXal8rWuS98YZxDOrpSER8JvOQy1OIFHLRdiy-BYaCoMBA1qaUmCuVr1RDBbUpN7JHiAzOB6faLV27sPR5HYCyqxEFyWxFGVcSoGjGawLvdiuXQd-MfskcRk53cCMcEjregVuPBXFecVEPmQlj56u-rXsND2tsOyTnHcLBZ9fgGHrgfm_l6dZJ07icq8NLo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NMQl42A82RGEDP-wFiayJ7ST24zaYVtFVE3TS3qLEPk-VuqRqG_5-zm5agZiQeMuDLUf57Lv74rv7AE69VcyESSInMhlJIV1UqdKniZHJtFy4NC-D2EQ-Gqn7e327BZ83tTCIGJLP8Mw_hrt825jW_yrrq9SreItn8NwrZ3XVWmu7K2jv6tAdNU0iwWOxvpSMdX88GPgsLnXGlaKYQfzhhIKqyl-mOPiXq73_e7N92O3iSHa-Av4AtrB-Da9-6y54CLMviDMWnJHDOes6qT6wC3JcljU1-zEjVovsvF02vp2lpUEUwrLv-LiSjWB3C3TtlA0nDtnt3F_peBhZ49i4aaZsUrObsm59bUQodjyCu6uv48vrqBNYiAzXyTKSyGXGtUWbJyhzY0RWusxUVZ7YyiZGq9ymmS5jm9hEGYN0eGVGjMTxlEtXijewXTc1vgWGjuJCR-SklDmRKFtmFVHcKs2JP1KEoHrQX3_xwnTdx70IxrQILCTWBWFUeIyKDqMefNrMmK06b_xj7KHHZDOug6MHx2tQi-5oLgpOW0PGQmj57ulZH-HF9fhmWAwHo2_v4SWto1epOsewvZy3eAI75udysph_CPvvF1AS1jE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Transfer+Learning+Based+on+Sparse+Autoencoder+for+Remaining+Useful+Life+Prediction+of+Tool+in+Manufacturing&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Sun%2C+Chuang&rft.au=Ma%2C+Meng&rft.au=Zhao%2C+Zhibin&rft.au=Tian%2C+Shaohua&rft.date=2019-04-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=15&rft.issue=4&rft.spage=2416&rft.epage=2425&rft_id=info:doi/10.1109%2FTII.2018.2881543&rft.externalDocID=8540073 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |