Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing

Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer l...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial informatics Ročník 15; číslo 4; s. 2416 - 2425
Hlavní autori: Sun, Chuang, Ma, Meng, Zhao, Zhibin, Tian, Shaohua, Yan, Ruqiang, Chen, Xuefeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1551-3203, 1941-0050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer learning (DTL) network based on sparse autoencoder (SAE) is presented. In the DTL method, three transfer strategies, that is, weight transfer, transfer learning of hidden feature, and weight update, are used to transfer an SAE trained by historical failure data to a new object. By these strategies, prediction of the new object without supervised information for training is achieved. Moreover, the learned features by deep transfer network for the new object share joint and similar characteristic to that of historical failure data, which is beneficial to accurate prediction. Case study on remaining useful life (RUL) prediction of cutting tool is performed to validate effectiveness of the DTL method. An SAE network is first trained by run-to-failure data with RUL information of a cutting tool in an off-line process. The trained network is then transferred to a new tool under operation for on-line RUL prediction. The prediction result with high accuracy shows advantage of the DTL method for RUL prediction.
AbstractList Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to transfer a deep network trained by historical failure data for prediction of a new object is rarely researched. In this paper, a deep transfer learning (DTL) network based on sparse autoencoder (SAE) is presented. In the DTL method, three transfer strategies, that is, weight transfer, transfer learning of hidden feature, and weight update, are used to transfer an SAE trained by historical failure data to a new object. By these strategies, prediction of the new object without supervised information for training is achieved. Moreover, the learned features by deep transfer network for the new object share joint and similar characteristic to that of historical failure data, which is beneficial to accurate prediction. Case study on remaining useful life (RUL) prediction of cutting tool is performed to validate effectiveness of the DTL method. An SAE network is first trained by run-to-failure data with RUL information of a cutting tool in an off-line process. The trained network is then transferred to a new tool under operation for on-line RUL prediction. The prediction result with high accuracy shows advantage of the DTL method for RUL prediction.
Author Tian, Shaohua
Ma, Meng
Zhao, Zhibin
Sun, Chuang
Yan, Ruqiang
Chen, Xuefeng
Author_xml – sequence: 1
  givenname: Chuang
  surname: Sun
  fullname: Sun, Chuang
  email: ch.sun@xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Meng
  surname: Ma
  fullname: Ma, Meng
  email: Mameng_m@126.com
  organization: Department of Mechanical Engineering, University of Massachusetts Lowell, MA, USA
– sequence: 3
  givenname: Zhibin
  orcidid: 0000-0003-4180-7137
  surname: Zhao
  fullname: Zhao, Zhibin
  email: zhaozhibin@stu.xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 4
  givenname: Shaohua
  surname: Tian
  fullname: Tian, Shaohua
  email: tianshaohua2015@xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 5
  givenname: Ruqiang
  surname: Yan
  fullname: Yan, Ruqiang
  email: yanruqiang@xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 6
  givenname: Xuefeng
  orcidid: 0000-0002-0130-3172
  surname: Chen
  fullname: Chen, Xuefeng
  email: chenxf@mail.xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
BookMark eNp9kLlOAzEQQC0UJAjQI9FYot7gaw-XIVyRgkAQ6pVjj5GjYC_2bsHf45CIgoJqXLzn0bwxGvngAaFzSiaUEnm1nM8njNBmwpqGloIfoGMqBS0IKckov8uSFpwRfoTGKa0J4TXh8hh1NwAdXkblk4WIF6Cid_4dX6sEBgePXzsVE-Dp0AfwOpgM2RDxC3wo90O-JbDDBi-cBfwcwTjdu-wFi5chbLDz-FH5wSrdDzHzp-jQqk2Cs_08QW93t8vZQ7F4up_PpotCM0n7QgATFZMGTE1B1FrzStlKr1Y1NStDtWxqU1ZSEUMNbbSGWgpR0YZZVjJhFT9Bl7t_uxg-B0h9uw5D9Hlly3IGQTiXIlNkR-kYUopg2y66DxW_Wkrabdc2d223Xdt916xUfxTterW9uY_Kbf4TL3aiA4DfPU0pCKk5_wZK3oeK
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2943076
crossref_primary_10_1109_TIM_2022_3162283
crossref_primary_10_1016_j_jprocont_2025_103408
crossref_primary_10_1016_j_ese_2025_100604
crossref_primary_10_1016_j_procir_2020_02_048
crossref_primary_10_1109_TII_2024_3405634
crossref_primary_10_1016_j_engappai_2023_105837
crossref_primary_10_1016_j_ymssp_2021_108487
crossref_primary_10_1007_s10489_022_04342_1
crossref_primary_10_1016_j_measurement_2021_109273
crossref_primary_10_1016_j_neunet_2021_04_003
crossref_primary_10_3233_JIFS_236636
crossref_primary_10_1016_j_jmapro_2024_06_010
crossref_primary_10_1016_j_isatra_2023_01_013
crossref_primary_10_1109_TTE_2022_3229716
crossref_primary_10_3390_s22124549
crossref_primary_10_1109_ACCESS_2021_3116813
crossref_primary_10_1109_TSMC_2022_3218536
crossref_primary_10_1016_j_jmsy_2025_05_012
crossref_primary_10_1109_TMECH_2020_3025615
crossref_primary_10_1109_TII_2022_3158615
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_1088_1361_6501_adda70
crossref_primary_10_1016_j_eswa_2023_120066
crossref_primary_10_1016_j_ress_2021_107583
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1016_j_asoc_2022_108507
crossref_primary_10_1016_j_cie_2022_108521
crossref_primary_10_1016_j_knosys_2022_109537
crossref_primary_10_1016_j_jmsy_2021_05_015
crossref_primary_10_1007_s00170_022_09909_3
crossref_primary_10_1007_s00170_023_11617_5
crossref_primary_10_1007_s10462_025_11343_2
crossref_primary_10_1007_s44163_022_00022_8
crossref_primary_10_1016_j_jmapro_2025_05_054
crossref_primary_10_1109_TII_2023_3299623
crossref_primary_10_3390_math9172039
crossref_primary_10_3390_s21206772
crossref_primary_10_1109_TIM_2023_3289564
crossref_primary_10_1016_j_eswa_2023_119886
crossref_primary_10_1109_JSEN_2021_3133622
crossref_primary_10_1007_s00170_019_04788_7
crossref_primary_10_1109_TMECH_2021_3098737
crossref_primary_10_1016_j_ymssp_2024_111924
crossref_primary_10_1080_09507116_2025_2539827
crossref_primary_10_1109_TII_2022_3205373
crossref_primary_10_1016_j_ifacol_2024_09_190
crossref_primary_10_1016_j_knosys_2019_105297
crossref_primary_10_1016_j_jmapro_2021_05_046
crossref_primary_10_1016_j_mtcomm_2023_107357
crossref_primary_10_1016_j_ymssp_2022_109608
crossref_primary_10_1007_s40684_025_00759_4
crossref_primary_10_1109_ACCESS_2020_3010378
crossref_primary_10_1109_TIE_2020_3003649
crossref_primary_10_1016_j_energy_2022_124857
crossref_primary_10_3390_s24010188
crossref_primary_10_1002_eqe_3856
crossref_primary_10_1109_ACCESS_2021_3117002
crossref_primary_10_1016_j_ymssp_2024_112251
crossref_primary_10_1109_JSEN_2023_3248323
crossref_primary_10_1016_j_jmsy_2020_11_016
crossref_primary_10_1109_TIM_2024_3451591
crossref_primary_10_1007_s11227_022_04827_3
crossref_primary_10_1016_j_jmsy_2020_11_019
crossref_primary_10_1016_j_measurement_2023_112900
crossref_primary_10_1109_TIM_2021_3116309
crossref_primary_10_1109_TTE_2024_3354107
crossref_primary_10_1016_j_aei_2024_103038
crossref_primary_10_1109_TII_2021_3116145
crossref_primary_10_1016_j_jmsy_2021_02_015
crossref_primary_10_1016_j_cie_2025_111193
crossref_primary_10_3390_s22062206
crossref_primary_10_1109_TII_2020_3000204
crossref_primary_10_1109_JSEN_2020_2975286
crossref_primary_10_1007_s11042_022_12597_6
crossref_primary_10_1016_j_isatra_2020_06_005
crossref_primary_10_1109_ACCESS_2022_3226780
crossref_primary_10_1016_j_measurement_2021_110276
crossref_primary_10_1109_TIM_2025_3548779
crossref_primary_10_1016_j_ijmachtools_2024_104209
crossref_primary_10_1016_j_measurement_2021_110393
crossref_primary_10_1109_TIM_2019_2923829
crossref_primary_10_1109_ACCESS_2023_3267960
crossref_primary_10_1016_j_conengprac_2024_106098
crossref_primary_10_3390_w12071929
crossref_primary_10_1109_ACCESS_2024_3406262
crossref_primary_10_1109_TIE_2021_3050382
crossref_primary_10_1109_TR_2020_3010970
crossref_primary_10_1109_TASE_2023_3294811
crossref_primary_10_1109_TIM_2023_3264027
crossref_primary_10_1016_j_measurement_2022_111644
crossref_primary_10_1016_j_optlastec_2025_112617
crossref_primary_10_3390_app13053307
crossref_primary_10_1109_TII_2019_2912428
crossref_primary_10_1016_j_ymssp_2023_110435
crossref_primary_10_1016_j_engappai_2024_108285
crossref_primary_10_1016_j_jmatprotec_2022_117531
crossref_primary_10_1007_s10489_021_02686_8
crossref_primary_10_1016_j_jmapro_2023_05_067
crossref_primary_10_1177_1475921720933155
crossref_primary_10_1002_cjce_25701
crossref_primary_10_1007_s10462_022_10230_4
crossref_primary_10_1016_j_measurement_2021_110383
crossref_primary_10_1016_j_ymssp_2022_110010
crossref_primary_10_1109_TII_2024_3399882
crossref_primary_10_1109_TMECH_2020_3004589
crossref_primary_10_1177_01423312241257297
crossref_primary_10_1007_s40684_021_00327_6
crossref_primary_10_1109_TII_2024_3403253
crossref_primary_10_1016_j_neucom_2021_07_080
crossref_primary_10_1109_TII_2022_3190554
crossref_primary_10_1016_j_jmapro_2024_12_039
crossref_primary_10_1007_s11704_022_1349_5
crossref_primary_10_1016_j_rcim_2022_102441
crossref_primary_10_1016_j_jmsy_2025_04_002
crossref_primary_10_1186_s10033_020_00459_x
crossref_primary_10_1109_TNNLS_2022_3151646
crossref_primary_10_1109_ACCESS_2023_3239784
crossref_primary_10_1109_TIM_2021_3075016
crossref_primary_10_1016_j_measurement_2022_111439
crossref_primary_10_1016_j_ress_2025_111094
crossref_primary_10_1007_s00521_022_08017_3
crossref_primary_10_1007_s44245_024_00059_2
crossref_primary_10_1016_j_comnet_2021_107819
crossref_primary_10_1109_ACCESS_2025_3551772
crossref_primary_10_1109_TII_2019_2926372
crossref_primary_10_1016_j_procir_2023_06_021
crossref_primary_10_1016_j_knosys_2023_111158
crossref_primary_10_1109_TIE_2021_3060675
crossref_primary_10_1007_s11063_021_10719_z
crossref_primary_10_1109_TIE_2021_3057030
crossref_primary_10_1109_TII_2020_2988208
crossref_primary_10_1109_TPWRS_2021_3071918
crossref_primary_10_1016_j_epsr_2021_107363
crossref_primary_10_1109_TIM_2023_3304687
crossref_primary_10_3390_machines13090789
crossref_primary_10_1016_j_neucom_2020_11_070
crossref_primary_10_3390_s22114161
crossref_primary_10_1007_s00170_021_07325_7
crossref_primary_10_1007_s12541_023_00924_2
crossref_primary_10_1109_TMECH_2023_3325538
crossref_primary_10_1109_TIM_2021_3057498
crossref_primary_10_1016_j_cirp_2020_05_002
crossref_primary_10_1016_j_aei_2024_102566
crossref_primary_10_1109_TIM_2021_3072670
crossref_primary_10_1016_j_ress_2023_109456
crossref_primary_10_3390_app142210625
crossref_primary_10_1016_j_neucom_2020_04_045
crossref_primary_10_1016_j_ress_2021_107556
crossref_primary_10_1109_TIM_2019_2958010
crossref_primary_10_1016_j_ress_2023_109695
crossref_primary_10_1016_j_ymssp_2018_12_008
crossref_primary_10_1016_j_knosys_2022_110199
crossref_primary_10_1177_16878132251339857
crossref_primary_10_1109_TIM_2020_3042300
crossref_primary_10_3390_s20174676
crossref_primary_10_1080_17445302_2025_2537939
crossref_primary_10_1109_JSEN_2025_3540781
crossref_primary_10_1007_s10845_024_02386_3
crossref_primary_10_1016_j_measurement_2022_112421
crossref_primary_10_3390_app11062761
crossref_primary_10_7717_peerj_cs_690
crossref_primary_10_1007_s12206_024_0402_8
crossref_primary_10_1016_j_aei_2024_102659
crossref_primary_10_1080_21693277_2024_2305358
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1109_TII_2019_2899118
crossref_primary_10_1088_1361_6501_ace4e4
crossref_primary_10_1109_ACCESS_2025_3551798
crossref_primary_10_1109_TII_2022_3229493
crossref_primary_10_1109_TNNLS_2022_3213009
crossref_primary_10_1109_TII_2021_3092361
crossref_primary_10_1016_j_apacoust_2022_108703
crossref_primary_10_1109_ACCESS_2023_3322733
crossref_primary_10_1109_TIM_2022_3159010
crossref_primary_10_1109_TII_2021_3056867
crossref_primary_10_1016_j_jmapro_2024_05_050
crossref_primary_10_1109_TSMC_2024_3358567
crossref_primary_10_3390_s23239535
crossref_primary_10_1016_j_engappai_2025_110180
crossref_primary_10_1016_j_jmsy_2023_09_011
crossref_primary_10_1109_TAES_2024_3502354
crossref_primary_10_3390_electronics11152364
crossref_primary_10_1016_j_engappai_2025_110059
crossref_primary_10_1016_j_jmsy_2024_06_004
crossref_primary_10_1016_j_ymssp_2022_109628
crossref_primary_10_1016_j_ymssp_2023_110239
crossref_primary_10_1109_JIOT_2024_3419044
crossref_primary_10_3390_s24072135
crossref_primary_10_3390_machines10020072
crossref_primary_10_1109_TIM_2021_3096283
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1109_TASE_2020_2971512
crossref_primary_10_1007_s00170_024_14273_5
crossref_primary_10_1007_s10845_021_01814_y
crossref_primary_10_1016_j_cie_2023_109605
crossref_primary_10_1016_j_compeleceng_2023_108949
crossref_primary_10_1016_j_engappai_2022_105712
crossref_primary_10_1109_TIM_2022_3164063
crossref_primary_10_1109_TFUZZ_2023_3298147
crossref_primary_10_1002_stc_2651
crossref_primary_10_1109_TII_2020_3005965
crossref_primary_10_1016_j_neucom_2023_126520
crossref_primary_10_1016_j_ress_2021_108278
crossref_primary_10_1016_j_rcim_2022_102368
crossref_primary_10_1016_j_tej_2020_106881
crossref_primary_10_1088_1361_6501_abead1
crossref_primary_10_1088_1361_6501_ad086a
crossref_primary_10_1016_j_eswa_2025_127770
crossref_primary_10_1109_TII_2022_3180389
crossref_primary_10_1109_TIE_2020_3044808
crossref_primary_10_1177_14759217251329485
crossref_primary_10_1109_ACCESS_2020_3036912
crossref_primary_10_1016_j_measurement_2023_113387
crossref_primary_10_3390_machines11010094
crossref_primary_10_1016_j_engappai_2022_105149
crossref_primary_10_1016_j_engstruct_2024_118352
crossref_primary_10_3390_e27010079
crossref_primary_10_1016_j_measurement_2024_115026
crossref_primary_10_1007_s00170_021_07784_y
crossref_primary_10_1016_j_ress_2021_107878
crossref_primary_10_1007_s00170_024_13713_6
crossref_primary_10_1016_j_isatra_2024_08_012
crossref_primary_10_3390_s25175465
crossref_primary_10_1016_j_ress_2021_107871
crossref_primary_10_1109_TII_2023_3262856
crossref_primary_10_1088_1361_6501_ac84f8
crossref_primary_10_1016_j_jmsy_2024_05_021
crossref_primary_10_1016_j_jmsy_2024_01_009
crossref_primary_10_1016_j_jmsy_2024_01_008
crossref_primary_10_1016_j_cja_2021_04_001
crossref_primary_10_1109_TIM_2021_3064810
crossref_primary_10_1109_TAI_2021_3097311
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_3390_machines10080639
crossref_primary_10_1016_j_asoc_2022_108934
crossref_primary_10_1109_JSEN_2021_3119151
crossref_primary_10_1016_j_measurement_2020_108286
crossref_primary_10_1109_TII_2021_3126309
crossref_primary_10_1016_j_knosys_2021_108110
crossref_primary_10_1109_ACCESS_2019_2939876
crossref_primary_10_1109_JSEN_2020_2980596
crossref_primary_10_1002_int_22493
crossref_primary_10_1109_TIM_2020_3033457
crossref_primary_10_1109_JIOT_2024_3456906
crossref_primary_10_1109_TASE_2024_3366288
crossref_primary_10_1016_j_isatra_2020_09_017
crossref_primary_10_3390_s20102878
crossref_primary_10_1109_TIM_2021_3071350
crossref_primary_10_1016_j_engappai_2024_108575
crossref_primary_10_1016_j_inffus_2024_102601
crossref_primary_10_1109_TII_2020_2991796
crossref_primary_10_1109_TIE_2020_3040669
crossref_primary_10_1016_j_ress_2022_108651
crossref_primary_10_1109_TII_2020_3014422
crossref_primary_10_1007_s12206_022_0102_1
crossref_primary_10_1109_TII_2020_2964117
crossref_primary_10_1016_j_cie_2024_110106
crossref_primary_10_1007_s10845_023_02088_2
crossref_primary_10_1088_1361_6501_ad8940
crossref_primary_10_1108_IJQRM_11_2022_0318
crossref_primary_10_1016_j_wear_2021_203902
crossref_primary_10_1109_TITS_2025_3551830
crossref_primary_10_1007_s11831_023_09979_w
crossref_primary_10_1016_j_ultras_2023_106931
crossref_primary_10_1016_j_measurement_2023_112879
crossref_primary_10_1088_1361_6501_ac2fe8
crossref_primary_10_1109_TII_2024_3495779
crossref_primary_10_1109_TII_2022_3154789
crossref_primary_10_1016_j_measurement_2022_110719
crossref_primary_10_1016_j_ymssp_2020_107293
crossref_primary_10_1109_JSEN_2023_3244587
crossref_primary_10_1016_j_ress_2025_111106
crossref_primary_10_1109_TII_2019_2900295
crossref_primary_10_1016_j_ymssp_2025_112498
crossref_primary_10_1109_TII_2020_3045392
crossref_primary_10_3390_bs15070873
crossref_primary_10_1016_j_engappai_2023_106845
crossref_primary_10_1109_TIM_2022_3221142
crossref_primary_10_1109_ACCESS_2021_3140165
crossref_primary_10_1016_j_engappai_2021_104383
crossref_primary_10_1039_D2EE01676A
crossref_primary_10_1007_s00521_023_08883_5
crossref_primary_10_1016_j_compind_2023_103989
crossref_primary_10_1016_j_isatra_2021_04_022
crossref_primary_10_1016_j_ress_2021_107946
crossref_primary_10_1109_TMECH_2021_3094986
crossref_primary_10_1016_j_jmsy_2024_04_001
crossref_primary_10_1016_j_engappai_2024_109716
crossref_primary_10_3390_s21206841
crossref_primary_10_1109_JSEN_2021_3061109
crossref_primary_10_1049_hve2_12034
crossref_primary_10_1109_TII_2022_3176891
crossref_primary_10_3390_s23083894
crossref_primary_10_1080_24725854_2023_2222402
crossref_primary_10_1016_j_measurement_2022_110748
crossref_primary_10_1016_j_ymssp_2023_110644
crossref_primary_10_3390_app10196916
crossref_primary_10_1109_TII_2021_3088057
crossref_primary_10_1016_j_ress_2022_108357
crossref_primary_10_1109_TCPMT_2020_3043011
crossref_primary_10_1007_s00170_025_16337_6
crossref_primary_10_1088_1361_6501_ac5874
crossref_primary_10_1007_s10489_021_02441_z
crossref_primary_10_1109_TIE_2021_3066933
crossref_primary_10_1007_s40436_022_00415_z
crossref_primary_10_1109_TNNLS_2021_3085869
crossref_primary_10_1109_MIE_2020_3034884
crossref_primary_10_1007_s10845_021_01804_0
crossref_primary_10_1109_JSYST_2020_2986162
crossref_primary_10_1016_j_ijepes_2021_106965
crossref_primary_10_1016_j_knosys_2021_107216
crossref_primary_10_1109_TSMC_2020_3048950
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_1007_s00170_021_06780_6
crossref_primary_10_1186_s10033_021_00570_7
crossref_primary_10_1109_TDEI_2024_3469913
crossref_primary_10_1109_ACCESS_2025_3556251
crossref_primary_10_1088_1361_6501_aca115
crossref_primary_10_3390_machines12100728
crossref_primary_10_1016_j_ymssp_2021_108068
crossref_primary_10_1016_j_knosys_2025_114259
crossref_primary_10_1016_j_jmsy_2023_06_004
crossref_primary_10_1016_j_engappai_2024_109037
crossref_primary_10_1155_2022_7863972
crossref_primary_10_1007_s00170_025_15007_x
crossref_primary_10_1016_j_procir_2025_08_042
crossref_primary_10_1016_j_ymssp_2024_111444
crossref_primary_10_1016_j_ress_2020_107098
crossref_primary_10_1109_ACCESS_2023_3349132
crossref_primary_10_3390_jmse12111977
crossref_primary_10_1109_TII_2019_2917233
crossref_primary_10_1007_s10845_024_02382_7
crossref_primary_10_1007_s40436_025_00564_x
crossref_primary_10_1109_TIM_2022_3200106
crossref_primary_10_3390_s21124043
crossref_primary_10_1007_s11063_022_10978_4
crossref_primary_10_1016_j_isatra_2021_05_007
crossref_primary_10_1109_TCYB_2020_2988277
crossref_primary_10_1016_j_measurement_2022_112028
crossref_primary_10_1109_TIM_2020_3031113
crossref_primary_10_1109_TCYB_2021_3059002
crossref_primary_10_1109_TII_2020_3041830
crossref_primary_10_1002_qre_3757
crossref_primary_10_1007_s10845_023_02264_4
crossref_primary_10_1155_2022_7674421
crossref_primary_10_3390_s23239494
crossref_primary_10_1109_TII_2023_3342885
crossref_primary_10_1016_j_knosys_2021_106925
crossref_primary_10_1080_24725854_2023_2242434
crossref_primary_10_1109_TII_2022_3206339
crossref_primary_10_3390_s24113454
crossref_primary_10_1016_j_ress_2025_111039
crossref_primary_10_1109_TII_2022_3172704
crossref_primary_10_1016_j_jmapro_2023_01_054
crossref_primary_10_1109_TII_2020_2976752
crossref_primary_10_1088_1361_6501_ac9078
crossref_primary_10_1016_j_ress_2025_110850
crossref_primary_10_1109_TII_2024_3352269
crossref_primary_10_1016_j_measurement_2023_113885
crossref_primary_10_3390_s20010109
crossref_primary_10_1109_TPEL_2021_3117788
crossref_primary_10_1109_TII_2024_3400299
crossref_primary_10_3390_app11115011
crossref_primary_10_1016_j_compstruct_2024_118139
crossref_primary_10_1016_j_ymssp_2022_109598
crossref_primary_10_1109_JSEN_2020_2979797
crossref_primary_10_1016_j_ress_2022_108444
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1177_09544054221124476
crossref_primary_10_1016_j_measurement_2021_109359
crossref_primary_10_1109_JIOT_2023_3243401
crossref_primary_10_1088_1361_6501_adeeb5
Cites_doi 10.1016/j.ymssp.2006.07.014
10.1016/j.jmsy.2018.04.008
10.1109/TIE.2017.2733438
10.1109/TII.2018.2864759
10.1016/j.asoc.2017.12.042
10.1016/j.ymssp.2016.02.007
10.1007/s10845-013-0774-6
10.1016/j.measurement.2014.01.024
10.1109/TIE.2018.2844856
10.1109/TIE.2004.824875
10.1109/TII.2015.2475219
10.1177/0954406215621585
10.1109/TII.2018.2868687
10.1016/j.jmsy.2018.01.003
10.1016/j.ymssp.2018.04.044
10.1016/j.ymssp.2017.11.021
10.1016/j.ymssp.2005.11.008
10.1016/j.procir.2016.01.002
10.1016/j.procir.2018.03.262
10.1007/s00170-016-9711-0
10.1109/TII.2016.2643693
10.1109/ACCESS.2017.2728010
10.1049/iet-rpg.2016.0236
10.1109/ACCESS.2018.2837621
10.1109/TPAMI.2013.50
10.1109/TII.2016.2535368
10.1109/TIE.2017.2762639
10.1109/TIE.2017.2733487
10.1109/TII.2017.2723943
10.1109/TIE.2015.2455055
10.1109/TII.2017.2672988
10.1177/0954406215590167
10.1109/TIE.2010.2098369
10.1109/SMC.2014.6974107
10.1109/TIE.2017.2745473
10.1109/TIM.2017.2669947
10.1115/1.4036350
10.1016/j.ymssp.2017.11.022
10.1016/j.cirp.2017.04.013
10.1016/j.ymssp.2016.06.012
10.1016/j.procs.2018.01.106
10.1109/TIM.2017.2674738
10.1109/TII.2018.2793246
10.1109/TSMC.2017.2754287
10.1109/TII.2018.2819674
10.1007/s10845-015-1155-0
10.1016/j.ymssp.2015.10.025
10.1016/j.ymssp.2011.03.001
10.3390/s121012964
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2018.2881543
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 2425
ExternalDocumentID 10_1109_TII_2018_2881543
8540073
Genre orig-research
GrantInformation_xml – fundername: National Key Research Development Program of China
  grantid: 2016YFF0104000; TII-18-1069
– fundername: Postdoctoral Science Foundation of China
  grantid: 2017M613117
– fundername: Absorb Outcome Transformation Project of Science and Technology Department in Shaanxi Province of China
  grantid: 2017CGZH-XNGJ-02
– fundername: National Natural Science Foundation of China; Natural Science Foundation of China
  grantid: 51705398; 51835009
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-4e24629ded71e47cc36af6cbb71dbd1c987d569a0d1d18cce79446182f2524fa3
IEDL.DBID RIE
ISICitedReferencesCount 426
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467095500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:21:22 EDT 2025
Sat Nov 29 04:40:30 EST 2025
Tue Nov 18 22:33:40 EST 2025
Wed Aug 27 02:44:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4e24629ded71e47cc36af6cbb71dbd1c987d569a0d1d18cce79446182f2524fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4180-7137
0000-0002-0130-3172
PQID 2203403394
PQPubID 85507
PageCount 10
ParticipantIDs ieee_primary_8540073
crossref_citationtrail_10_1109_TII_2018_2881543
crossref_primary_10_1109_TII_2018_2881543
proquest_journals_2203403394
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref52
ref11
ref10
ref17
ref16
ref19
ref18
hinchi (ref41) 2018; 127
ref51
ref50
yu (ref15) 2017; 91
ref45
ref48
ref42
ref44
ref43
ref49
ref8
ref4
ref3
ref6
ref5
ref40
ref35
rao (ref9) 2014; 51
ref34
ref37
ref36
ref31
ref30
kurek (ref46) 0; 10225
ref33
ref32
ref2
ref1
ref39
ref38
zhang (ref47) 2017
cai (ref7) 2012; 12
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
zhang (ref14) 2016; 29
References_xml – ident: ref52
  doi: 10.1016/j.ymssp.2006.07.014
– ident: ref40
  doi: 10.1016/j.jmsy.2018.04.008
– ident: ref48
  doi: 10.1109/TIE.2017.2733438
– ident: ref43
  doi: 10.1109/TII.2018.2864759
– ident: ref17
  doi: 10.1016/j.asoc.2017.12.042
– ident: ref2
  doi: 10.1016/j.ymssp.2016.02.007
– ident: ref12
  doi: 10.1007/s10845-013-0774-6
– volume: 51
  start-page: 63
  year: 2014
  ident: ref9
  article-title: Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network
  publication-title: Meas
  doi: 10.1016/j.measurement.2014.01.024
– ident: ref38
  doi: 10.1109/TIE.2018.2844856
– ident: ref24
  doi: 10.1109/TIE.2004.824875
– ident: ref1
  doi: 10.1109/TII.2015.2475219
– ident: ref27
  doi: 10.1177/0954406215621585
– ident: ref39
  doi: 10.1109/TII.2018.2868687
– ident: ref28
  doi: 10.1016/j.jmsy.2018.01.003
– ident: ref3
  doi: 10.1016/j.ymssp.2018.04.044
– ident: ref16
  doi: 10.1016/j.ymssp.2017.11.021
– ident: ref25
  doi: 10.1016/j.ymssp.2005.11.008
– ident: ref13
  doi: 10.1016/j.procir.2016.01.002
– ident: ref42
  doi: 10.1016/j.procir.2018.03.262
– volume: 91
  start-page: 201
  year: 2017
  ident: ref15
  article-title: A weighted hidden Markov model approach for continuous-state tool wear monitoring and tool life prediction
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-016-9711-0
– ident: ref22
  doi: 10.1109/TII.2016.2643693
– ident: ref31
  doi: 10.1109/ACCESS.2017.2728010
– ident: ref4
  doi: 10.1049/iet-rpg.2016.0236
– year: 2017
  ident: ref47
  article-title: Particle learning and gated recurrent neural network for online tool wear diagnosis and prognosis
– ident: ref44
  doi: 10.1109/ACCESS.2018.2837621
– ident: ref49
  doi: 10.1109/TPAMI.2013.50
– ident: ref19
  doi: 10.1109/TII.2016.2535368
– ident: ref37
  doi: 10.1109/TIE.2017.2762639
– volume: 29
  start-page: 76
  year: 2016
  ident: ref14
  article-title: Modelling and prediction of tool wear using LS-SVM in milling operation
  publication-title: Int J Comput Integr Manuf
– ident: ref21
  doi: 10.1109/TIE.2017.2733487
– ident: ref8
  doi: 10.1109/TII.2017.2723943
– ident: ref20
  doi: 10.1109/TIE.2015.2455055
– ident: ref34
  doi: 10.1109/TII.2017.2672988
– ident: ref26
  doi: 10.1177/0954406215590167
– ident: ref23
  doi: 10.1109/TIE.2010.2098369
– ident: ref51
  doi: 10.1109/SMC.2014.6974107
– ident: ref36
  doi: 10.1109/TIE.2017.2745473
– ident: ref32
  doi: 10.1109/TIM.2017.2669947
– ident: ref18
  doi: 10.1115/1.4036350
– ident: ref11
  doi: 10.1016/j.ymssp.2017.11.022
– volume: 10225
  start-page: 1
  year: 0
  ident: ref46
  article-title: Deep learning in assessment of drill condition on the basis of images of drilled holes
  publication-title: Proc 8th Int Conf Graph Image Process
– ident: ref45
  doi: 10.1016/j.cirp.2017.04.013
– ident: ref5
  doi: 10.1016/j.ymssp.2016.06.012
– volume: 127
  start-page: 123
  year: 2018
  ident: ref41
  article-title: Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.01.106
– ident: ref35
  doi: 10.1109/TIM.2017.2674738
– ident: ref33
  doi: 10.1109/TII.2018.2793246
– ident: ref50
  doi: 10.1109/TSMC.2017.2754287
– ident: ref29
  doi: 10.1109/TII.2018.2819674
– ident: ref10
  doi: 10.1007/s10845-015-1155-0
– ident: ref30
  doi: 10.1016/j.ymssp.2015.10.025
– ident: ref6
  doi: 10.1016/j.ymssp.2011.03.001
– volume: 12
  start-page: 12964
  year: 2012
  ident: ref7
  article-title: Operation reliability assessment for cutting tools by applying a proportional covariate model to condition monitoring information
  publication-title: SENSORS
  doi: 10.3390/s121012964
SSID ssj0037039
Score 2.660519
Snippet Deep learning with ability to feature learning and nonlinear function approximation has shown its effectiveness for machine fault prediction. While, how to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2416
SubjectTerms Cutting tools
Deep learning
deep transfer learning (DTL)
Failure
Fault diagnosis
Feature extraction
Hidden Markov models
Life prediction
Machine learning
Maintenance management
Monitoring
Predictive models
remaining useful life (RUL) prediction
sparse autoencoder (SAE)
Tool life
transfer learning
Useful life
Weight
Title Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing
URI https://ieeexplore.ieee.org/document/8540073
https://www.proquest.com/docview/2203403394
Volume 15
WOSCitedRecordID wos000467095500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4QKEgFkrlAxck0k1sx49jgVatBFUFW6m3KLHH1UpLstrd8PsZO9kVCITELYexFeUbz8wXzwPgbbSKSrgiC0LJTAoZssbUMU2MTKbnIpS6TsMm9PW1ubuzN3vwflcLg4gp-QxP42O6y_ed6-Ovsqkp4xRvsQ_7WquhVmtrdQVprk29UcsiEzwX2yvJ3E5nV1cxh8uccmMoYhC_uaA0U-UPQ5y8y8WT_3uvQ3g8RpHsbID9Kexh-wwe_dJb8AiWnxCXLLmigCs29lG9Zx_IbXnWtezbkjgtsrN-08Vmlp6EKIBlX_H7MDSC3a4x9Av2eR6Q3azihU4EkXWBzbpuweYt-1K3fayMSKWOz-H24nz28TIbxytkjttik0nkUnHr0esCpXZOqDoo1zS68I0vnDXal8rWuS98YZxDOrpSER8JvOQy1OIFHLRdiy-BYaCoMBA1qaUmCuVr1RDBbUpN7JHiAzOB6faLV27sPR5HYCyqxEFyWxFGVcSoGjGawLvdiuXQd-MfskcRk53cCMcEjregVuPBXFecVEPmQlj56u-rXsND2tsOyTnHcLBZ9fgGHrgfm_l6dZJ07icq8NLo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NMQl42A82RGEDP-wFiayJ7ST24zaYVtFVE3TS3qLEPk-VuqRqG_5-zm5agZiQeMuDLUf57Lv74rv7AE69VcyESSInMhlJIV1UqdKniZHJtFy4NC-D2EQ-Gqn7e327BZ83tTCIGJLP8Mw_hrt825jW_yrrq9SreItn8NwrZ3XVWmu7K2jv6tAdNU0iwWOxvpSMdX88GPgsLnXGlaKYQfzhhIKqyl-mOPiXq73_e7N92O3iSHa-Av4AtrB-Da9-6y54CLMviDMWnJHDOes6qT6wC3JcljU1-zEjVovsvF02vp2lpUEUwrLv-LiSjWB3C3TtlA0nDtnt3F_peBhZ49i4aaZsUrObsm59bUQodjyCu6uv48vrqBNYiAzXyTKSyGXGtUWbJyhzY0RWusxUVZ7YyiZGq9ymmS5jm9hEGYN0eGVGjMTxlEtXijewXTc1vgWGjuJCR-SklDmRKFtmFVHcKs2JP1KEoHrQX3_xwnTdx70IxrQILCTWBWFUeIyKDqMefNrMmK06b_xj7KHHZDOug6MHx2tQi-5oLgpOW0PGQmj57ulZH-HF9fhmWAwHo2_v4SWto1epOsewvZy3eAI75udysph_CPvvF1AS1jE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Transfer+Learning+Based+on+Sparse+Autoencoder+for+Remaining+Useful+Life+Prediction+of+Tool+in+Manufacturing&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Sun%2C+Chuang&rft.au=Ma%2C+Meng&rft.au=Zhao%2C+Zhibin&rft.au=Tian%2C+Shaohua&rft.date=2019-04-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=15&rft.issue=4&rft.spage=2416&rft.epage=2425&rft_id=info:doi/10.1109%2FTII.2018.2881543&rft.externalDocID=8540073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon