GAM-MDR: probing miRNA–drug resistance using a graph autoencoder based on random path masking
MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal...
Uložené v:
| Vydané v: | Briefings in functional genomics Ročník 23; číslo 4; s. 475 - 483 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
19.07.2024
|
| Predmet: | |
| ISSN: | 2041-2649, 2041-2657, 2041-2657 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA–drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA–drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR. |
|---|---|
| AbstractList | MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA-drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA-drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA-drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA-drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR. MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA–drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA–drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR. |
| Author | Jiang, Xin Du, Zhenya Zhou, Zhecheng Xu, Yixin Liu, Mingzhe Fu, Xiangzheng Zhuo, Linlin Zou, Quan |
| Author_xml | – sequence: 1 givenname: Zhecheng surname: Zhou fullname: Zhou, Zhecheng – sequence: 2 givenname: Zhenya surname: Du fullname: Du, Zhenya – sequence: 3 givenname: Xin surname: Jiang fullname: Jiang, Xin – sequence: 4 givenname: Linlin surname: Zhuo fullname: Zhuo, Linlin – sequence: 5 givenname: Yixin surname: Xu fullname: Xu, Yixin – sequence: 6 givenname: Xiangzheng surname: Fu fullname: Fu, Xiangzheng – sequence: 7 givenname: Mingzhe surname: Liu fullname: Liu, Mingzhe – sequence: 8 givenname: Quan surname: Zou fullname: Zou, Quan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38391194$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkL9OwzAQhy1UREvpxow8MhDqf0lqtqpAQaIgVTBHTnxpA4kd7GRg4x14Q56EVC0dELfcSff9TrrvGPWMNYDQKSWXlEg-TvNVPYZSASHhARowImjAojDu7Wch-2jk_SvpilMhKDlCfT7hklIpBiiZTxfB4np5hWtn08KscFUsH6ffn1_atSvswBe-USYD3PrNVuGVU_Uaq7axYDKrweFUedDYGuyU0bbCtWrWuFL-rQucoMNclR5Guz5EL7c3z7O74OFpfj-bPgQZk7QJhGaaSsJARiSOGcQiBxqlqYo0UzQSRDDNGIsyIbnmsaBykmeERXmYcqlZyofofHu3e-O9Bd8kVeEzKEtlwLY-4WTCZDghPO7Qsx3aphXopHZFpdxH8iulAy62QOas9w7yPUJJstGebLQnO-0dzv7gWdGoprCmcaoo_w_9AEBMhyw |
| CitedBy_id | crossref_primary_10_1021_acs_jcim_5c00038 crossref_primary_10_1109_TCBBIO_2025_3556409 crossref_primary_10_1109_JBHI_2024_3525266 crossref_primary_10_1111_jcmm_70083 crossref_primary_10_1089_cmb_2024_0587 crossref_primary_10_1111_jcmm_18590 crossref_primary_10_1111_jcmm_18591 crossref_primary_10_1111_jcmm_18571 crossref_primary_10_3389_fphar_2024_1529128 crossref_primary_10_1093_bib_bbae481 crossref_primary_10_1111_jcmm_18553 crossref_primary_10_1002_biot_202400050 crossref_primary_10_1007_s11030_025_11211_9 crossref_primary_10_1186_s12859_025_06169_2 crossref_primary_10_1016_j_ins_2024_121360 crossref_primary_10_1109_JBHI_2024_3476120 crossref_primary_10_1109_TCBBIO_2024_3517559 |
| Cites_doi | 10.1016/S1672-0229(08)60044-3 10.1007/s00018-015-1922-2 10.1016/j.drup.2010.02.001 10.1093/bib/bbad247 10.1371/journal.pcbi.1007872 10.1109/TCBB.2017.2723394 10.1093/bib/bbac338 10.3390/biology12010041 10.1007/978-3-030-60802-6_25 10.1145/3580305.3599546 10.1083/jcb.201208082 10.1186/s12967-019-2009-x 10.1016/S0960-9822(98)70103-4 10.1093/bioinformatics/btt677 10.12659/MSM.901191 10.1007/s40139-012-0004-5 10.1038/s41598-017-15716-8 10.1093/bioinformatics/btz621 10.1093/bib/bbz012 10.1038/nrg2934 10.1002/humu.21641 10.3389/fgene.2014.00023 10.1101/gr.6.10.986 10.1109/ACCESS.2021.3063885 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/bfgp/elae005 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-2657 |
| EndPage | 483 |
| ExternalDocumentID | 38391194 10_1093_bfgp_elae005 |
| Genre | Journal Article |
| GroupedDBID | --- .2P .I3 0R~ 4.4 48X 53G 5VS 6J9 70D AAHBH AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABJNI ABMNT ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACIWK ACPRK ACUFI ACUHS ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADNBA ADOCK ADPDF ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHXPO AIAGR AIJHB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AMNDL APIBT APWMN ARIXL AXUDD AYOIW BAWUL BAYMD BEYMZ BHONS BQDIO BSWAC C45 CDBKE CITATION CZ4 DAKXR DILTD DU5 D~K EAD EAP EAS EBD EBS EE~ EMK EMOBN ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KOP KSI KSN M-Z N9A NGC NLBLG NOMLY NU- O9- OAWHX ODMLO OJQWA OJZSN OK1 OVD PAFKI PEELM PQQKQ Q1. Q5Y RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TLC TOX TR2 TUS X7H Y6R YAYTL YKOAZ YXANX ~91 CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c291t-4d2d1902e960772e74fe16bba6d2a164042d2226c493d374198fc026f5b39d2b3 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001169668500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-2649 2041-2657 |
| IngestDate | Sat Sep 27 16:26:13 EDT 2025 Thu Aug 28 04:41:02 EDT 2025 Tue Nov 18 21:43:05 EST 2025 Sat Nov 29 05:30:00 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | accurate node representations miRNA–drug resistance (MDR) random path masking graph autoencoder (GAE) |
| Language | English |
| License | https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c291t-4d2d1902e960772e74fe16bba6d2a164042d2226c493d374198fc026f5b39d2b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 38391194 |
| PQID | 3082958037 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_3082958037 pubmed_primary_38391194 crossref_primary_10_1093_bfgp_elae005 crossref_citationtrail_10_1093_bfgp_elae005 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-19 |
| PublicationDateYYYYMMDD | 2024-07-19 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Briefings in functional genomics |
| PublicationTitleAlternate | Brief Funct Genomics |
| PublicationYear | 2024 |
| References | Mørk (2024072104411206400_ref4) 2014; 30 Zhou (2024072104411206400_ref20) 2020; 21 Sarkar (2024072104411206400_ref10) 2010; 13 Guo (2024072104411206400_ref19) 2020 Zheng (2024072104411206400_ref23) 2019; 17 Kipf (2024072104411206400_ref27) 2016 Ishida (2024072104411206400_ref6) 2013; 1 Huang (2024072104411206400_ref25) 2020; 36 Wang (2024072104411206400_ref15) 2020; 14 Ozsolak (2024072104411206400_ref8) 2011; 12 Peterson (2024072104411206400_ref12) 2014; 5 Gong (2024072104411206400_ref13) 2012; 33 Brody (2024072104411206400_ref33) 2021 Zheng (2024072104411206400_ref2) 2022; 23 Wei (2024072104411206400_ref26) 2023; 24 Sori (2024072104411206400_ref16) 2021; 15 Kipf (2024072104411206400_ref30) 2017 Afonso-Grunz (2024072104411206400_ref3) 2015; 72 Hamilton (2024072104411206400_ref29) 2017; 30 Khan (2024072104411206400_ref14) 2021; 15 Xu (2024072104411206400_ref31) 2018 Cai (2024072104411206400_ref1) 2009; 7 Heid (2024072104411206400_ref9) 1996; 6 Deepthi (2024072104411206400_ref22) 2021; 9 Johnston (2024072104411206400_ref7) 1998; 8 Guan (2024072104411206400_ref21) 2022; 12 Lindow (2024072104411206400_ref5) 2012 Li (2024072104411206400_ref28) 2023 Shi (2024072104411206400_ref11) 2017; 23 Xie (2024072104411206400_ref17) 2017; 16 Zheng (2024072104411206400_ref24) 2020; 16 Chen (2024072104411206400_ref18) 2017; 7 Veličković (2024072104411206400_ref32) 2017 |
| References_xml | – volume: 7 start-page: 147 issue: 4 year: 2009 ident: 2024072104411206400_ref1 article-title: A brief review on the mechanisms of mirna regulation publication-title: Genom Proteom Bioinform doi: 10.1016/S1672-0229(08)60044-3 – volume: 72 start-page: 3127 year: 2015 ident: 2024072104411206400_ref3 article-title: Principles of mirna–mrna interactions: beyond sequence complementarity publication-title: Cell Mol Life Sci doi: 10.1007/s00018-015-1922-2 – volume-title: 7th International Conference on Learning Representations year: 2018 ident: 2024072104411206400_ref31 article-title: How powerful are graph neural networks? – volume: 13 start-page: 57 issue: 3 year: 2010 ident: 2024072104411206400_ref10 article-title: Implication of micrornas in drug resistance for designing novel cancer therapy publication-title: Drug Resist Updat doi: 10.1016/j.drup.2010.02.001 – volume: 24 start-page: bbad247 year: 2023 ident: 2024072104411206400_ref26 article-title: Gcfmcl: predicting mirna-drug sensitivity using graph collaborative filtering and multi-view contrastive learning publication-title: Brief Bioinform doi: 10.1093/bib/bbad247 – volume: 30 year: 2017 ident: 2024072104411206400_ref29 article-title: Inductive representation learning on large graphs publication-title: Adv Neural Inf Process Syst – volume: 16 start-page: e1007872 issue: 5 year: 2020 ident: 2024072104411206400_ref24 article-title: Icda-cgr: identification of circrna-disease associations based on chaos game representation publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007872 – volume: 16 start-page: 1722 issue: 5 year: 2017 ident: 2024072104411206400_ref17 article-title: Emdl: extracting mirna-drug interactions from literature publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2723394 – volume: 23 start-page: bbac338 issue: 5 year: 2022 ident: 2024072104411206400_ref2 article-title: Nasmdr: a framework for mirna-drug resistance prediction using efficient neural architecture search and graph isomorphism networks publication-title: Brief Bioinform doi: 10.1093/bib/bbac338 – volume: 12 start-page: 41 issue: 1 year: 2022 ident: 2024072104411206400_ref21 article-title: Mfidma: a multiple information integration model for the prediction of drug–mirna associations publication-title: Biology doi: 10.3390/biology12010041 – volume: 14 start-page: 1 year: 2020 ident: 2024072104411206400_ref15 article-title: A survey of current trends in computational predictions of protein-protein interactions publication-title: Front Comp Sci – volume: 15 start-page: 1 year: 2021 ident: 2024072104411206400_ref16 article-title: Dfd-net: lung cancer detection from denoised ct scan image using deep learning publication-title: Front Comp Sci – start-page: 279 volume-title: Intelligent Computing Theories and Application: 16th International Conference, ICIC 2020 year: 2020 ident: 2024072104411206400_ref19 article-title: Inferring drug-mirna associations by integrating drug smiles and mirna sequence information doi: 10.1007/978-3-030-60802-6_25 – start-page: 1268 volume-title: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining year: 2023 ident: 2024072104411206400_ref28 article-title: What’s behind the mask: Understanding masked graph modeling for graph autoencoders doi: 10.1145/3580305.3599546 – volume-title: Journal of Cell Biology year: 2012 ident: 2024072104411206400_ref5 article-title: Discovering the first microrna-targeted drug doi: 10.1083/jcb.201208082 – volume-title: CoRR year: 2017 ident: 2024072104411206400_ref32 article-title: Graph attention networks. – volume: 17 start-page: 1 issue: 1 year: 2019 ident: 2024072104411206400_ref23 article-title: Mlmda: a machine learning approach to predict and validate microrna–disease associations by integrating of heterogenous information sources publication-title: J Transl Med doi: 10.1186/s12967-019-2009-x – volume: 8 start-page: R171 issue: 5 year: 1998 ident: 2024072104411206400_ref7 article-title: Gene chips: array of hope for understanding gene regulation publication-title: Curr Biol doi: 10.1016/S0960-9822(98)70103-4 – volume-title: 5th International Conference on Learning Representations year: 2017 ident: 2024072104411206400_ref30 article-title: Semi-supervised classification with graph convolutional networks – volume: 30 start-page: 392 issue: 3 year: 2014 ident: 2024072104411206400_ref4 article-title: Protein-driven inference of mirna–disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt677 – volume: 23 start-page: 2042 year: 2017 ident: 2024072104411206400_ref11 article-title: Identification of key genes affecting results of hyperthermia in osteosarcoma based on integrative chip-seq/targetscan analysis publication-title: Med Sci Monit doi: 10.12659/MSM.901191 – volume: 1 start-page: 63 year: 2013 ident: 2024072104411206400_ref6 article-title: Mirna-based therapeutic strategies publication-title: Curr Pathobiol Rep doi: 10.1007/s40139-012-0004-5 – volume: 7 start-page: 15921 issue: 1 year: 2017 ident: 2024072104411206400_ref18 article-title: Mirddcr: a mirna-based method to comprehensively infer drug-disease causal relationships publication-title: Sci Rep doi: 10.1038/s41598-017-15716-8 – volume: 36 start-page: 851 issue: 3 year: 2020 ident: 2024072104411206400_ref25 article-title: Graph convolution for predicting associations between mirna and drug resistance publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz621 – volume: 21 start-page: 498 issue: 2 year: 2020 ident: 2024072104411206400_ref20 article-title: In silico drug repositioning based on drug-mirna associations publication-title: Brief Bioinform doi: 10.1093/bib/bbz012 – volume-title: The Tenth International Conference on Learning Representations year: 2021 ident: 2024072104411206400_ref33 article-title: How attentive are graph attention networks? – volume: 12 start-page: 87 issue: 2 year: 2011 ident: 2024072104411206400_ref8 article-title: Rna sequencing: advances, challenges and opportunities publication-title: Nat Rev Genet doi: 10.1038/nrg2934 – volume: 33 start-page: 254 issue: 1 year: 2012 ident: 2024072104411206400_ref13 article-title: Genome-wide identification of snps in microrna genes and the snp effects on microrna target binding and biogenesis publication-title: Hum Mutat doi: 10.1002/humu.21641 – volume: 5 start-page: 23 year: 2014 ident: 2024072104411206400_ref12 article-title: Common features of microrna target prediction tools publication-title: Front Genet doi: 10.3389/fgene.2014.00023 – year: 2016 ident: 2024072104411206400_ref27 article-title: Variational graph auto-encoders – volume: 6 start-page: 986 issue: 10 year: 1996 ident: 2024072104411206400_ref9 article-title: Real time quantitative pcr publication-title: Genome Res doi: 10.1101/gr.6.10.986 – volume: 15 start-page: 1 year: 2021 ident: 2024072104411206400_ref14 article-title: pienpred: a bi-layered discriminative model for enhancers and their subtypes via novel cascade multi-level subset feature selection algorithm publication-title: Front Comp Sci – volume: 9 start-page: 38331 year: 2021 ident: 2024072104411206400_ref22 article-title: An ensemble approach based on multi-source information to predict drug-mirna associations via convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3063885 |
| SSID | ssj0000314410 |
| Score | 2.5111704 |
| Snippet | MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 475 |
| SubjectTerms | Algorithms Computational Biology - methods Drug Resistance - genetics Drug Resistance, Neoplasm - genetics Humans MicroRNAs - genetics |
| Title | GAM-MDR: probing miRNA–drug resistance using a graph autoencoder based on random path masking |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38391194 https://www.proquest.com/docview/3082958037 |
| Volume | 23 |
| WOSCitedRecordID | wos001169668500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2041-2657 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0000314410 issn: 2041-2649 databaseCode: TOX dateStart: 20100101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6ARIviOsol8lIwEsUljjOxbxVsIHQ1qGpQxESiuzYWSvapLTNtL3yy_Fx3KQIJo0HXqLISuzI58u52f4OQi-ZKBgRlLsyV9ylQeS5jKvE9UKhfC9QhWdSA18O4-EwSVP2udf7uT4Lcz6NyzK5uGDz_ypq3aaFDUdn_0Hcbae6Qd9roeurFru-XkvwHwZH7tH7Ewj1oVoMpAJmk5PhwJWL-szR0TV4jPA71yZNwB3DWe3welUBqSVwS4Bpk7CMoA2ZrGZAvjp2Znz5fW3nOkYkVZi6n5PSAQtpE4tA_Drb2Eb_dVzVZhVkrDRGbB_Ge7at5WVrHT5NbAY7nZTd-3VlEwhT22oTFYRCBtSqQ6PPiEd9l0QNH_Ub9Zc2q5CbA8gWeHRDu9KmyMofWr9hxBLF2RwkPuXK88LOvq3X9IfH2cHp4WE22k9Hr-c_XKg8Biv0tgzLFrpB4pDBtsDRcdrm6YDenxpSi_Zb7fkJPeoejLlnR_zds7kiXDFuy-guumPjDTxocHIP9VR5H91qKpBePkDfLFreYosV3GEFd1jBBiuYY4MVvIEVbLCCqxI3WMGAFWyx8hCdHuyP3n10bcUNNyfMX7lUEqk9RKJ0XKvDLhXTQvmREDyShOvAWmt4qR3KKKcskIF2RllS5DqKL0IRMElE8Ahtl1WpHiOcBKIQwo85E4RywpPIl2FBYhXzXEov6iNnPVtZbunooSrKNGu2RQQZzG1m57aPXrVPzxsaliuee7Ge-EzrSVj84qWq6mUGtEwsTLwg7qOdRiJtT4GOEnyf0SfXePsput2B-xnaXi1q9RzdzM9Xk-ViF23FabJrEPQL806Waw |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAM-MDR%3A+probing+miRNA-drug+resistance+using+a+graph+autoencoder+based+on+random+path+masking&rft.jtitle=Briefings+in+functional+genomics&rft.au=Zhou%2C+Zhecheng&rft.au=Du%2C+Zhenya&rft.au=Jiang%2C+Xin&rft.au=Zhuo%2C+Linlin&rft.date=2024-07-19&rft.issn=2041-2657&rft.eissn=2041-2657&rft.volume=23&rft.issue=4&rft.spage=475&rft_id=info:doi/10.1093%2Fbfgp%2Felae005&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2649&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2649&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2649&client=summon |