GAM-MDR: probing miRNA–drug resistance using a graph autoencoder based on random path masking

MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Briefings in functional genomics Ročník 23; číslo 4; s. 475 - 483
Hlavní autori: Zhou, Zhecheng, Du, Zhenya, Jiang, Xin, Zhuo, Linlin, Xu, Yixin, Fu, Xiangzheng, Liu, Mingzhe, Zou, Quan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 19.07.2024
Predmet:
ISSN:2041-2649, 2041-2657, 2041-2657
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA–drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA–drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.
AbstractList MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA-drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA-drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA-drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA-drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.
MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA–drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA–drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.
Author Jiang, Xin
Du, Zhenya
Zhou, Zhecheng
Xu, Yixin
Liu, Mingzhe
Fu, Xiangzheng
Zhuo, Linlin
Zou, Quan
Author_xml – sequence: 1
  givenname: Zhecheng
  surname: Zhou
  fullname: Zhou, Zhecheng
– sequence: 2
  givenname: Zhenya
  surname: Du
  fullname: Du, Zhenya
– sequence: 3
  givenname: Xin
  surname: Jiang
  fullname: Jiang, Xin
– sequence: 4
  givenname: Linlin
  surname: Zhuo
  fullname: Zhuo, Linlin
– sequence: 5
  givenname: Yixin
  surname: Xu
  fullname: Xu, Yixin
– sequence: 6
  givenname: Xiangzheng
  surname: Fu
  fullname: Fu, Xiangzheng
– sequence: 7
  givenname: Mingzhe
  surname: Liu
  fullname: Liu, Mingzhe
– sequence: 8
  givenname: Quan
  surname: Zou
  fullname: Zou, Quan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38391194$$D View this record in MEDLINE/PubMed
BookMark eNptkL9OwzAQhy1UREvpxow8MhDqf0lqtqpAQaIgVTBHTnxpA4kd7GRg4x14Q56EVC0dELfcSff9TrrvGPWMNYDQKSWXlEg-TvNVPYZSASHhARowImjAojDu7Wch-2jk_SvpilMhKDlCfT7hklIpBiiZTxfB4np5hWtn08KscFUsH6ffn1_atSvswBe-USYD3PrNVuGVU_Uaq7axYDKrweFUedDYGuyU0bbCtWrWuFL-rQucoMNclR5Guz5EL7c3z7O74OFpfj-bPgQZk7QJhGaaSsJARiSOGcQiBxqlqYo0UzQSRDDNGIsyIbnmsaBykmeERXmYcqlZyofofHu3e-O9Bd8kVeEzKEtlwLY-4WTCZDghPO7Qsx3aphXopHZFpdxH8iulAy62QOas9w7yPUJJstGebLQnO-0dzv7gWdGoprCmcaoo_w_9AEBMhyw
CitedBy_id crossref_primary_10_1021_acs_jcim_5c00038
crossref_primary_10_1109_TCBBIO_2025_3556409
crossref_primary_10_1109_JBHI_2024_3525266
crossref_primary_10_1111_jcmm_70083
crossref_primary_10_1089_cmb_2024_0587
crossref_primary_10_1111_jcmm_18590
crossref_primary_10_1111_jcmm_18591
crossref_primary_10_1111_jcmm_18571
crossref_primary_10_3389_fphar_2024_1529128
crossref_primary_10_1093_bib_bbae481
crossref_primary_10_1111_jcmm_18553
crossref_primary_10_1002_biot_202400050
crossref_primary_10_1007_s11030_025_11211_9
crossref_primary_10_1186_s12859_025_06169_2
crossref_primary_10_1016_j_ins_2024_121360
crossref_primary_10_1109_JBHI_2024_3476120
crossref_primary_10_1109_TCBBIO_2024_3517559
Cites_doi 10.1016/S1672-0229(08)60044-3
10.1007/s00018-015-1922-2
10.1016/j.drup.2010.02.001
10.1093/bib/bbad247
10.1371/journal.pcbi.1007872
10.1109/TCBB.2017.2723394
10.1093/bib/bbac338
10.3390/biology12010041
10.1007/978-3-030-60802-6_25
10.1145/3580305.3599546
10.1083/jcb.201208082
10.1186/s12967-019-2009-x
10.1016/S0960-9822(98)70103-4
10.1093/bioinformatics/btt677
10.12659/MSM.901191
10.1007/s40139-012-0004-5
10.1038/s41598-017-15716-8
10.1093/bioinformatics/btz621
10.1093/bib/bbz012
10.1038/nrg2934
10.1002/humu.21641
10.3389/fgene.2014.00023
10.1101/gr.6.10.986
10.1109/ACCESS.2021.3063885
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bfgp/elae005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-2657
EndPage 483
ExternalDocumentID 38391194
10_1093_bfgp_elae005
Genre Journal Article
GroupedDBID ---
.2P
.I3
0R~
4.4
48X
53G
5VS
6J9
70D
AAHBH
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABJNI
ABMNT
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACIWK
ACPRK
ACUFI
ACUHS
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADNBA
ADOCK
ADPDF
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BSWAC
C45
CDBKE
CITATION
CZ4
DAKXR
DILTD
DU5
D~K
EAD
EAP
EAS
EBD
EBS
EE~
EMK
EMOBN
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KOP
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OJZSN
OK1
OVD
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TLC
TOX
TR2
TUS
X7H
Y6R
YAYTL
YKOAZ
YXANX
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c291t-4d2d1902e960772e74fe16bba6d2a164042d2226c493d374198fc026f5b39d2b3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001169668500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-2649
2041-2657
IngestDate Sat Sep 27 16:26:13 EDT 2025
Thu Aug 28 04:41:02 EDT 2025
Tue Nov 18 21:43:05 EST 2025
Sat Nov 29 05:30:00 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords accurate node representations
miRNA–drug resistance (MDR)
random path masking
graph autoencoder (GAE)
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2024. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-4d2d1902e960772e74fe16bba6d2a164042d2226c493d374198fc026f5b39d2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38391194
PQID 3082958037
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_3082958037
pubmed_primary_38391194
crossref_primary_10_1093_bfgp_elae005
crossref_citationtrail_10_1093_bfgp_elae005
PublicationCentury 2000
PublicationDate 2024-07-19
PublicationDateYYYYMMDD 2024-07-19
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in functional genomics
PublicationTitleAlternate Brief Funct Genomics
PublicationYear 2024
References Mørk (2024072104411206400_ref4) 2014; 30
Zhou (2024072104411206400_ref20) 2020; 21
Sarkar (2024072104411206400_ref10) 2010; 13
Guo (2024072104411206400_ref19) 2020
Zheng (2024072104411206400_ref23) 2019; 17
Kipf (2024072104411206400_ref27) 2016
Ishida (2024072104411206400_ref6) 2013; 1
Huang (2024072104411206400_ref25) 2020; 36
Wang (2024072104411206400_ref15) 2020; 14
Ozsolak (2024072104411206400_ref8) 2011; 12
Peterson (2024072104411206400_ref12) 2014; 5
Gong (2024072104411206400_ref13) 2012; 33
Brody (2024072104411206400_ref33) 2021
Zheng (2024072104411206400_ref2) 2022; 23
Wei (2024072104411206400_ref26) 2023; 24
Sori (2024072104411206400_ref16) 2021; 15
Kipf (2024072104411206400_ref30) 2017
Afonso-Grunz (2024072104411206400_ref3) 2015; 72
Hamilton (2024072104411206400_ref29) 2017; 30
Khan (2024072104411206400_ref14) 2021; 15
Xu (2024072104411206400_ref31) 2018
Cai (2024072104411206400_ref1) 2009; 7
Heid (2024072104411206400_ref9) 1996; 6
Deepthi (2024072104411206400_ref22) 2021; 9
Johnston (2024072104411206400_ref7) 1998; 8
Guan (2024072104411206400_ref21) 2022; 12
Lindow (2024072104411206400_ref5) 2012
Li (2024072104411206400_ref28) 2023
Shi (2024072104411206400_ref11) 2017; 23
Xie (2024072104411206400_ref17) 2017; 16
Zheng (2024072104411206400_ref24) 2020; 16
Chen (2024072104411206400_ref18) 2017; 7
Veličković (2024072104411206400_ref32) 2017
References_xml – volume: 7
  start-page: 147
  issue: 4
  year: 2009
  ident: 2024072104411206400_ref1
  article-title: A brief review on the mechanisms of mirna regulation
  publication-title: Genom Proteom Bioinform
  doi: 10.1016/S1672-0229(08)60044-3
– volume: 72
  start-page: 3127
  year: 2015
  ident: 2024072104411206400_ref3
  article-title: Principles of mirna–mrna interactions: beyond sequence complementarity
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-015-1922-2
– volume-title: 7th International Conference on Learning Representations
  year: 2018
  ident: 2024072104411206400_ref31
  article-title: How powerful are graph neural networks?
– volume: 13
  start-page: 57
  issue: 3
  year: 2010
  ident: 2024072104411206400_ref10
  article-title: Implication of micrornas in drug resistance for designing novel cancer therapy
  publication-title: Drug Resist Updat
  doi: 10.1016/j.drup.2010.02.001
– volume: 24
  start-page: bbad247
  year: 2023
  ident: 2024072104411206400_ref26
  article-title: Gcfmcl: predicting mirna-drug sensitivity using graph collaborative filtering and multi-view contrastive learning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbad247
– volume: 30
  year: 2017
  ident: 2024072104411206400_ref29
  article-title: Inductive representation learning on large graphs
  publication-title: Adv Neural Inf Process Syst
– volume: 16
  start-page: e1007872
  issue: 5
  year: 2020
  ident: 2024072104411206400_ref24
  article-title: Icda-cgr: identification of circrna-disease associations based on chaos game representation
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007872
– volume: 16
  start-page: 1722
  issue: 5
  year: 2017
  ident: 2024072104411206400_ref17
  article-title: Emdl: extracting mirna-drug interactions from literature
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2723394
– volume: 23
  start-page: bbac338
  issue: 5
  year: 2022
  ident: 2024072104411206400_ref2
  article-title: Nasmdr: a framework for mirna-drug resistance prediction using efficient neural architecture search and graph isomorphism networks
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac338
– volume: 12
  start-page: 41
  issue: 1
  year: 2022
  ident: 2024072104411206400_ref21
  article-title: Mfidma: a multiple information integration model for the prediction of drug–mirna associations
  publication-title: Biology
  doi: 10.3390/biology12010041
– volume: 14
  start-page: 1
  year: 2020
  ident: 2024072104411206400_ref15
  article-title: A survey of current trends in computational predictions of protein-protein interactions
  publication-title: Front Comp Sci
– volume: 15
  start-page: 1
  year: 2021
  ident: 2024072104411206400_ref16
  article-title: Dfd-net: lung cancer detection from denoised ct scan image using deep learning
  publication-title: Front Comp Sci
– start-page: 279
  volume-title: Intelligent Computing Theories and Application: 16th International Conference, ICIC 2020
  year: 2020
  ident: 2024072104411206400_ref19
  article-title: Inferring drug-mirna associations by integrating drug smiles and mirna sequence information
  doi: 10.1007/978-3-030-60802-6_25
– start-page: 1268
  volume-title: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
  year: 2023
  ident: 2024072104411206400_ref28
  article-title: What’s behind the mask: Understanding masked graph modeling for graph autoencoders
  doi: 10.1145/3580305.3599546
– volume-title: Journal of Cell Biology
  year: 2012
  ident: 2024072104411206400_ref5
  article-title: Discovering the first microrna-targeted drug
  doi: 10.1083/jcb.201208082
– volume-title: CoRR
  year: 2017
  ident: 2024072104411206400_ref32
  article-title: Graph attention networks.
– volume: 17
  start-page: 1
  issue: 1
  year: 2019
  ident: 2024072104411206400_ref23
  article-title: Mlmda: a machine learning approach to predict and validate microrna–disease associations by integrating of heterogenous information sources
  publication-title: J Transl Med
  doi: 10.1186/s12967-019-2009-x
– volume: 8
  start-page: R171
  issue: 5
  year: 1998
  ident: 2024072104411206400_ref7
  article-title: Gene chips: array of hope for understanding gene regulation
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(98)70103-4
– volume-title: 5th International Conference on Learning Representations
  year: 2017
  ident: 2024072104411206400_ref30
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 30
  start-page: 392
  issue: 3
  year: 2014
  ident: 2024072104411206400_ref4
  article-title: Protein-driven inference of mirna–disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt677
– volume: 23
  start-page: 2042
  year: 2017
  ident: 2024072104411206400_ref11
  article-title: Identification of key genes affecting results of hyperthermia in osteosarcoma based on integrative chip-seq/targetscan analysis
  publication-title: Med Sci Monit
  doi: 10.12659/MSM.901191
– volume: 1
  start-page: 63
  year: 2013
  ident: 2024072104411206400_ref6
  article-title: Mirna-based therapeutic strategies
  publication-title: Curr Pathobiol Rep
  doi: 10.1007/s40139-012-0004-5
– volume: 7
  start-page: 15921
  issue: 1
  year: 2017
  ident: 2024072104411206400_ref18
  article-title: Mirddcr: a mirna-based method to comprehensively infer drug-disease causal relationships
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-15716-8
– volume: 36
  start-page: 851
  issue: 3
  year: 2020
  ident: 2024072104411206400_ref25
  article-title: Graph convolution for predicting associations between mirna and drug resistance
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz621
– volume: 21
  start-page: 498
  issue: 2
  year: 2020
  ident: 2024072104411206400_ref20
  article-title: In silico drug repositioning based on drug-mirna associations
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz012
– volume-title: The Tenth International Conference on Learning Representations
  year: 2021
  ident: 2024072104411206400_ref33
  article-title: How attentive are graph attention networks?
– volume: 12
  start-page: 87
  issue: 2
  year: 2011
  ident: 2024072104411206400_ref8
  article-title: Rna sequencing: advances, challenges and opportunities
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2934
– volume: 33
  start-page: 254
  issue: 1
  year: 2012
  ident: 2024072104411206400_ref13
  article-title: Genome-wide identification of snps in microrna genes and the snp effects on microrna target binding and biogenesis
  publication-title: Hum Mutat
  doi: 10.1002/humu.21641
– volume: 5
  start-page: 23
  year: 2014
  ident: 2024072104411206400_ref12
  article-title: Common features of microrna target prediction tools
  publication-title: Front Genet
  doi: 10.3389/fgene.2014.00023
– year: 2016
  ident: 2024072104411206400_ref27
  article-title: Variational graph auto-encoders
– volume: 6
  start-page: 986
  issue: 10
  year: 1996
  ident: 2024072104411206400_ref9
  article-title: Real time quantitative pcr
  publication-title: Genome Res
  doi: 10.1101/gr.6.10.986
– volume: 15
  start-page: 1
  year: 2021
  ident: 2024072104411206400_ref14
  article-title: pienpred: a bi-layered discriminative model for enhancers and their subtypes via novel cascade multi-level subset feature selection algorithm
  publication-title: Front Comp Sci
– volume: 9
  start-page: 38331
  year: 2021
  ident: 2024072104411206400_ref22
  article-title: An ensemble approach based on multi-source information to predict drug-mirna associations via convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3063885
SSID ssj0000314410
Score 2.5111704
Snippet MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 475
SubjectTerms Algorithms
Computational Biology - methods
Drug Resistance - genetics
Drug Resistance, Neoplasm - genetics
Humans
MicroRNAs - genetics
Title GAM-MDR: probing miRNA–drug resistance using a graph autoencoder based on random path masking
URI https://www.ncbi.nlm.nih.gov/pubmed/38391194
https://www.proquest.com/docview/3082958037
Volume 23
WOSCitedRecordID wos001169668500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2041-2657
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0000314410
  issn: 2041-2649
  databaseCode: TOX
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6ARIviOsol8lIwEsUljjOxbxVsIHQ1qGpQxESiuzYWSvapLTNtL3yy_Fx3KQIJo0HXqLISuzI58u52f4OQi-ZKBgRlLsyV9ylQeS5jKvE9UKhfC9QhWdSA18O4-EwSVP2udf7uT4Lcz6NyzK5uGDz_ypq3aaFDUdn_0Hcbae6Qd9roeurFru-XkvwHwZH7tH7Ewj1oVoMpAJmk5PhwJWL-szR0TV4jPA71yZNwB3DWe3welUBqSVwS4Bpk7CMoA2ZrGZAvjp2Znz5fW3nOkYkVZi6n5PSAQtpE4tA_Drb2Eb_dVzVZhVkrDRGbB_Ge7at5WVrHT5NbAY7nZTd-3VlEwhT22oTFYRCBtSqQ6PPiEd9l0QNH_Ub9Zc2q5CbA8gWeHRDu9KmyMofWr9hxBLF2RwkPuXK88LOvq3X9IfH2cHp4WE22k9Hr-c_XKg8Biv0tgzLFrpB4pDBtsDRcdrm6YDenxpSi_Zb7fkJPeoejLlnR_zds7kiXDFuy-guumPjDTxocHIP9VR5H91qKpBePkDfLFreYosV3GEFd1jBBiuYY4MVvIEVbLCCqxI3WMGAFWyx8hCdHuyP3n10bcUNNyfMX7lUEqk9RKJ0XKvDLhXTQvmREDyShOvAWmt4qR3KKKcskIF2RllS5DqKL0IRMElE8Ahtl1WpHiOcBKIQwo85E4RywpPIl2FBYhXzXEov6iNnPVtZbunooSrKNGu2RQQZzG1m57aPXrVPzxsaliuee7Ge-EzrSVj84qWq6mUGtEwsTLwg7qOdRiJtT4GOEnyf0SfXePsput2B-xnaXi1q9RzdzM9Xk-ViF23FabJrEPQL806Waw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAM-MDR%3A+probing+miRNA-drug+resistance+using+a+graph+autoencoder+based+on+random+path+masking&rft.jtitle=Briefings+in+functional+genomics&rft.au=Zhou%2C+Zhecheng&rft.au=Du%2C+Zhenya&rft.au=Jiang%2C+Xin&rft.au=Zhuo%2C+Linlin&rft.date=2024-07-19&rft.issn=2041-2657&rft.eissn=2041-2657&rft.volume=23&rft.issue=4&rft.spage=475&rft_id=info:doi/10.1093%2Fbfgp%2Felae005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-2649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-2649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-2649&client=summon