Recursive QAOA outperforms the original QAOA for the MAX-CUT problem on complete graphs

Quantum approximate optimization algorithms are hybrid quantum-classical variational algorithms designed to approximately solve combinatorial optimization problems such as the MAX-CUT problem. In spite of its potential for near-term quantum applications, it has been known that quantum approximate op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing Jg. 23; H. 3
Hauptverfasser: Bae, Eunok, Lee, Soojoon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 26.02.2024
Schlagworte:
ISSN:1573-1332, 1573-1332
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Quantum approximate optimization algorithms are hybrid quantum-classical variational algorithms designed to approximately solve combinatorial optimization problems such as the MAX-CUT problem. In spite of its potential for near-term quantum applications, it has been known that quantum approximate optimization algorithms have limitations for certain instances to solve the MAX-CUT problem, at any constant level p . Recently, the recursive quantum approximate optimization algorithm, which is a non-local version of quantum approximate optimization algorithm, has been proposed to overcome these limitations. However, it has been shown by mostly numerical evidences that the recursive quantum approximate optimization algorithm outperforms the original quantum approximate optimization algorithm for specific instances. In this paper, we analytically prove that the recursive quantum approximate optimization algorithm is more competitive than the original one to solve the MAX-CUT problem for complete graphs with respect to the approximation ratio.
AbstractList Quantum approximate optimization algorithms are hybrid quantum-classical variational algorithms designed to approximately solve combinatorial optimization problems such as the MAX-CUT problem. In spite of its potential for near-term quantum applications, it has been known that quantum approximate optimization algorithms have limitations for certain instances to solve the MAX-CUT problem, at any constant level p . Recently, the recursive quantum approximate optimization algorithm, which is a non-local version of quantum approximate optimization algorithm, has been proposed to overcome these limitations. However, it has been shown by mostly numerical evidences that the recursive quantum approximate optimization algorithm outperforms the original quantum approximate optimization algorithm for specific instances. In this paper, we analytically prove that the recursive quantum approximate optimization algorithm is more competitive than the original one to solve the MAX-CUT problem for complete graphs with respect to the approximation ratio.
ArticleNumber 78
Author Lee, Soojoon
Bae, Eunok
Author_xml – sequence: 1
  givenname: Eunok
  surname: Bae
  fullname: Bae, Eunok
  organization: Department of Mathematics, Research Institute for Natural Sciences, Hanyang University
– sequence: 2
  givenname: Soojoon
  orcidid: 0000-0003-2925-1017
  surname: Lee
  fullname: Lee, Soojoon
  email: level@khu.ac.kr
  organization: Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University
BookMark eNp9kMtOwzAQRS1UJErhB1j5Bwx-xUmWUcVLKqpArWBnOem4dZXEkZ0i8feEhgVi0dVc3Zkzi3OJJq1vAaEbRm8ZpeldZIzxjFAuCZU8U4SeoSlLUkGYEHzyJ1-gyxj3lHKmMjVF729QHUJ0n4Bfi2WB_aHvIFgfmoj7HWAf3Na1ph63Q39sX4oPMl-vcBd8WUODfYsr33Q19IC3wXS7eIXOrakjXP_OGVo_3K_mT2SxfHyeFwtS8Zz1RJZGZtQKrnIl81KahNLNRlSKySSHLMs3qWWpsqCsFZBYKdKkTGxa5UMEw8UMZePfKvgYA1hdud70zrd9MK7WjOofQXoUpAdB-ihI0wHl_9AuuMaEr9OQGKE4HLdbCHrvD2EQFE9R34Qlecw
CitedBy_id crossref_primary_10_1371_journal_pone_0315842
crossref_primary_10_1007_s11128_025_04925_0
crossref_primary_10_1103_PhysRevA_110_052435
Cites_doi 10.1103/PhysRevA.97.022304
10.22331/q-2021-04-20-437
10.22331/q-2022-03-30-678
10.1103/PhysRevLett.125.260505
10.22331/q-2018-08-06-79
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11128-024-04286-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-1332
ExternalDocumentID 10_1007_s11128_024_04286_0
GrantInformation_xml – fundername: Institute for Information and Communications Technology Promotion
  grantid: IITP-2022-2018-0-01402; NRF-2022M3H3A106307411
  funderid: http://dx.doi.org/10.13039/501100010418
– fundername: Ministry of Science and ICT, South Korea
  grantid: NRF-2020M3E4A1079678; NRF-2022R1C1C2006396
  funderid: http://dx.doi.org/10.13039/501100014188
GroupedDBID -5F
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9O
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ACUHS
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
EPL
TUS
~8M
ID FETCH-LOGICAL-c291t-4ba480f3269649b4a500dd3c61459e889d7f176fe6ff3e5f4375b5f7c9f43ea23
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001170834400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-1332
IngestDate Sat Nov 29 03:12:09 EST 2025
Tue Nov 18 22:25:35 EST 2025
Fri Feb 21 02:41:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Complete graphs
68Q12
81P68
Recursive quantum approximate optimization algorithms
MAX-CUT problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4ba480f3269649b4a500dd3c61459e889d7f176fe6ff3e5f4375b5f7c9f43ea23
ORCID 0000-0003-2925-1017
ParticipantIDs crossref_citationtrail_10_1007_s11128_024_04286_0
crossref_primary_10_1007_s11128_024_04286_0
springer_journals_10_1007_s11128_024_04286_0
PublicationCentury 2000
PublicationDate 2024-02-26
PublicationDateYYYYMMDD 2024-02-26
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-26
  day: 26
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Quantum information processing
PublicationTitleAbbrev Quantum Inf Process
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References CR11
CR2
CR3
Preskill (CR1) 2018; 2
CR5
Marwaha (CR6) 2021; 5
CR8
CR7
Wang, Hadfield, Jiang, Rieffel (CR10) 2018; 97
Bravyi, Kliesch, König, Tang (CR4) 2020; 125
Bravyi, Kliesch, König, Tang (CR9) 2022; 6
S Bravyi (4286_CR9) 2022; 6
4286_CR3
4286_CR2
4286_CR5
J Preskill (4286_CR1) 2018; 2
4286_CR7
4286_CR11
K Marwaha (4286_CR6) 2021; 5
S Bravyi (4286_CR4) 2020; 125
4286_CR8
Z Wang (4286_CR10) 2018; 97
References_xml – volume: 97
  start-page: 022304
  year: 2018
  ident: CR10
  article-title: Quantum approximate optimization algorithm for maxcut: a fermionic view
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022304
– volume: 5
  start-page: 437
  year: 2021
  ident: CR6
  article-title: Local classical max-cut algorithm outperforms QAOA on high-girth regular graphs
  publication-title: Quantum
  doi: 10.22331/q-2021-04-20-437
– ident: CR5
– ident: CR7
– ident: CR8
– volume: 6
  start-page: 678
  year: 2022
  ident: CR9
  article-title: Hybrid quantum-classical algorithms for approximate graph coloring
  publication-title: Quantum
  doi: 10.22331/q-2022-03-30-678
– ident: CR3
– ident: CR2
– volume: 125
  start-page: 260504
  year: 2020
  ident: CR4
  article-title: Obstacles to state preparation and variational optimization from symmetry protection
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.260505
– volume: 2
  start-page: 79
  year: 2018
  ident: CR1
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– ident: CR11
– ident: 4286_CR3
– ident: 4286_CR2
– volume: 6
  start-page: 678
  year: 2022
  ident: 4286_CR9
  publication-title: Quantum
  doi: 10.22331/q-2022-03-30-678
– volume: 5
  start-page: 437
  year: 2021
  ident: 4286_CR6
  publication-title: Quantum
  doi: 10.22331/q-2021-04-20-437
– volume: 97
  start-page: 022304
  year: 2018
  ident: 4286_CR10
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.022304
– volume: 2
  start-page: 79
  year: 2018
  ident: 4286_CR1
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– ident: 4286_CR5
– ident: 4286_CR8
– ident: 4286_CR7
– ident: 4286_CR11
– volume: 125
  start-page: 260504
  year: 2020
  ident: 4286_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.260505
SSID ssj0021686
Score 2.3746104
Snippet Quantum approximate optimization algorithms are hybrid quantum-classical variational algorithms designed to approximately solve combinatorial optimization...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Data Structures and Information Theory
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
Title Recursive QAOA outperforms the original QAOA for the MAX-CUT problem on complete graphs
URI https://link.springer.com/article/10.1007/s11128-024-04286-0
Volume 23
WOSCitedRecordID wos001170834400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1332
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021686
  issn: 1573-1332
  databaseCode: RSV
  dateStart: 20020401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oVPDidCrOL3LwpoF-pG1yLMPhQafObe5W0jQBQbqxdv79pmnqGMhAbyV9gfJe0997fR8_gBvOeOQrpi3gZTpA8bjA3AlS7HKRavRSwjWJ9sljNBjQ6ZS92Kawoql2b1KS5ku9anbTrgHFGlNw5efrOHgbdjTc0YqwYfg2-Qmz3JCGtj3m933rELSe_zSw0m__74EO4cC6kSiu7X4EWzLvQLuhaED2xHZgz1R4iuIY3ofVn_WqWB29xs8xmi3Led00UCDtBKKGIau-q9fN6lM8xb3xCFneGTTLkSlC1642MrOuixMY9-9HvQdsWRWw8JhbYpJyQh2l3TYWEpaSihIhy3yhcTpgklKWRcqNQiVDpXwZKOJHQRqoSDB9Kbnnn0Irn-XyDJCSUjg8SzlTnAhC04Bz15eUE98X2thdcBtFJ8KOHK-YLz6T1bDkSoeJ1mFidJg4Xbj92TOvB25slL5rbJPYw1dsED__m_gF7HvGvB72wktolYulvIJd8VV-FItr89Z9A7ej0gw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60KnqxWhXrcw_edCGPzWOPoVgqtlVrW3sLm80uCJKWJvX3u9kkLQUp6C1sZiHMZPPNZB4fwB2jzLMlVRawYhWgWIxjZjgRNhmPFHpJbupE-7jr9fv-ZEJfy6awtKp2r1KS-ku9anZTroGPFabg3M9XcfA27BCFWPnE_MH7eBlmma7vlu0xv-9bh6D1_KeGlXb9fw90BIelG4mCwu7HsCWSBtQrigZUntgG7OkKT56ewMcg_7OeF6ujt-AlQNNFNiuaBlKknEBUMWQVd9W6Xu0FE9waDVHJO4OmCdJF6MrVRnrWdXoKo_bjsNXBJasC5hY1M0wiRnxDKreNuoRGJKdEiGObK5x2qPB9GnvS9FwpXClt4Uhie07kSI9TdSmYZZ9BLZkm4hyQFIIbLI4YlYxw4kcOY6YtfEZsmytjN8GsFB3ycuR4znzxFa6GJec6DJUOQ63D0GjC_XLPrBi4sVH6obJNWB6-dIP4xd_Eb2G_M-x1w-5T__kSDixtagtb7hXUsvlCXMMu_84-0_mNfgN_AJmi1PA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90fuCLH1NxfubBNw2ubfqRxzEdinNO3ebeSpomIEg31s6_3yRtNwcyEN9KeoFyd-F-19zdD-CSUeY7kioL2LFKUGzGMau7EbYYj1T0ktwyF-2Dtt_pBMMh7f7o4jfV7uWVZN7ToKc0JdnNOJY388Y3BRMCrOIL1phf5cSrsEZ0Ib3O198Gs5TL8gKvaJX5fd9iOFq8CzUhprXz_4_bhe0CXqJG7g97sCKSKuyU1A2oOMlV2DCVnzzdh_dX_cddF7Gjl8ZzA42m2ThvJkiRAoeoZM7K36p1s_rUGOJmv4cKPho0SpApTlcQHJkZ2OkB9Ft3veY9LtgWMLeplWESMRLUpYJz1CM0IpoqIY4druK3S0UQ0NiXlu9J4UnpCFcSx3cjV_qcqkfBbOcQKskoEUeApBC8zuKIUckIJ0HkMmY5ImDEcbhyghpYpdJDXowi14wYn-F8iLLWYah0GBodhvUaXM32jPNBHEulr0s7hcWhTJeIH_9N_AI2u7etsP3QeTyBLdtY2sa2dwqVbDIVZ7DOv7KPdHJunPEb5G3d1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+QAOA+outperforms+the+original+QAOA+for+the+MAX-CUT+problem+on+complete+graphs&rft.jtitle=Quantum+information+processing&rft.au=Bae%2C+Eunok&rft.au=Lee%2C+Soojoon&rft.date=2024-02-26&rft.pub=Springer+US&rft.eissn=1573-1332&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1007%2Fs11128-024-04286-0&rft.externalDocID=10_1007_s11128_024_04286_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-1332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-1332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-1332&client=summon