Optimizing Predictive Maintenance in Industrial IoT Cloud Using Dragonfly Algorithm

Cloud computing enables users to access and utilize various computing resources over the internet, including servers, storage, databases, and analytics. This paradigm offers flexibility, scalability, and cost efficiency, making it a critical technology for numerous applications. In the realm of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal Jg. 12; H. 17; S. 36001 - 36018
Hauptverfasser: Rani S, Sheeja, AbuRukba, Raafat, El-Fakih, Khaled
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4662, 2327-4662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cloud computing enables users to access and utilize various computing resources over the internet, including servers, storage, databases, and analytics. This paradigm offers flexibility, scalability, and cost efficiency, making it a critical technology for numerous applications. In the realm of the Internet of Things (IoT), cloud computing provides a scalable and flexible infrastructure for managing the vast amount of data generated by IoT devices. Specifically, in Industrial IoT applications (IIoT), predictive maintenance has become a key focus, leveraging advanced technologies to forecast equipment failures and minimize downtime. However, achieving high accuracy in fault prediction remains a challenge. To address this, we propose a novel approach called Brokenstick Regression-based multiobjective dragonfly predictive optimization (BR-MDPO). This method aims to optimize predictive maintenance with enhanced accuracy and execution time (ET). The process begins with IoT devices collecting data, such as vibration, temperature, speed, torque, and operational hours, from industrial machinery. This data is then sent to centralized cloud data centers for predictive analysis. The BR-MDPO technique utilizes the Multiobjective Dragonfly Optimization algorithm, a metaheuristic inspired by the natural behavior of dragonflies, to solve multiobjective optimization problems. Brokenstick regression analyzes the data to optimize various objective functions. The technique identifies potential failures, facilitating proactive maintenance and informed decision-making to ensure continuous productivity. The proposed method shows a significant improvement in accuracy, precision, and recall by 7%, 5%, and 6%, respectively. The observed results reveal a 6%, 4%, and 5% enhancement in the accuracy, precision, and recall. Furthermore, the proposed technique realizes a substantial reduction in error rate by 68%, 15%, and 13% reduction in ET as well as latency compared to conventional methods.
AbstractList Cloud computing enables users to access and utilize various computing resources over the internet, including servers, storage, databases, and analytics. This paradigm offers flexibility, scalability, and cost efficiency, making it a critical technology for numerous applications. In the realm of the Internet of Things (IoT), cloud computing provides a scalable and flexible infrastructure for managing the vast amount of data generated by IoT devices. Specifically, in Industrial IoT applications (IIoT), predictive maintenance has become a key focus, leveraging advanced technologies to forecast equipment failures and minimize downtime. However, achieving high accuracy in fault prediction remains a challenge. To address this, we propose a novel approach called Brokenstick Regression-based multiobjective dragonfly predictive optimization (BR-MDPO). This method aims to optimize predictive maintenance with enhanced accuracy and execution time (ET). The process begins with IoT devices collecting data, such as vibration, temperature, speed, torque, and operational hours, from industrial machinery. This data is then sent to centralized cloud data centers for predictive analysis. The BR-MDPO technique utilizes the Multiobjective Dragonfly Optimization algorithm, a metaheuristic inspired by the natural behavior of dragonflies, to solve multiobjective optimization problems. Brokenstick regression analyzes the data to optimize various objective functions. The technique identifies potential failures, facilitating proactive maintenance and informed decision-making to ensure continuous productivity. The proposed method shows a significant improvement in accuracy, precision, and recall by 7%, 5%, and 6%, respectively. The observed results reveal a 6%, 4%, and 5% enhancement in the accuracy, precision, and recall. Furthermore, the proposed technique realizes a substantial reduction in error rate by 68%, 15%, and 13% reduction in ET as well as latency compared to conventional methods.
Author AbuRukba, Raafat
El-Fakih, Khaled
Rani S, Sheeja
Author_xml – sequence: 1
  givenname: Sheeja
  orcidid: 0000-0002-5169-0860
  surname: Rani S
  fullname: Rani S, Sheeja
  email: sheejaranis@gmail.com
  organization: Computer Science and Engineering Department, American University of Sharjah, Sharjah, UAE
– sequence: 2
  givenname: Raafat
  orcidid: 0000-0003-2695-5836
  surname: AbuRukba
  fullname: AbuRukba, Raafat
  email: raburukba@aus.edu
  organization: Computer Science and Engineering Department, American University of Sharjah, Sharjah, UAE
– sequence: 3
  givenname: Khaled
  orcidid: 0000-0002-2343-2848
  surname: El-Fakih
  fullname: El-Fakih, Khaled
  email: kelfakih@aus.edu
  organization: Computer Science and Engineering Department, American University of Sharjah, Sharjah, UAE
BookMark eNpNkF1LwzAUhoMoOOd-gOBFwOvNfDRpcznm12Qywe06pOnpzOiSmbbC_PW2bKBX51y8z3sOzxU698EDQjeUTCgl6v51vlxNGGFiwkXGZErP0IBxlo4TKdn5v_0Sjep6SwjpMEGVHKCP5b5xO_fj_Aa_Ryicbdw34DfjfAPeeAvYeTz3RVs30ZkKz8MKz6rQFnhd99BDNJvgy-qAp9UmRNd87q7RRWmqGkanOUTrp8fV7GW8WD7PZ9PF2DJFm-4hkprM5FTkNs8E0IwWVnHFTElBcp5zajkpU5EKldk8AQGcU0kYASiUBD5Ed8fefQxfLdSN3oY2-u6k5ixJE6K4zLoUPaZsDHUdodT76HYmHjQlutene32616dP-jrm9sg4APjLU5IoIgT_BYb8bPk
CODEN IITJAU
Cites_doi 10.1007/s40436-022-00433-x
10.1038/s41598-023-38887-z
10.1109/ACCESS.2024.3454548
10.1007/s10845-022-01960-x
10.23919/JSC.2023.0011
10.1109/JIOT.2021.3097269
10.1016/j.ifacol.2020.11.028
10.1016/j.iswa.2023.200196
10.1109/JIOT.2021.3050441
10.1007/s42452-021-04598-1
10.1109/ACCESS.2023.3289076
10.3390/su14063387
10.1016/j.ress.2021.108191
10.1109/JIOT.2024.3436110
10.3390/machines11030322
10.1108/JMTM-02-2022-0093
10.1016/j.cie.2020.106948
10.1016/j.cie.2023.109566
10.1109/ACCESS.2024.3359424
10.1016/j.aej.2023.12.065
10.1109/ACCESS.2021.3069256
10.1109/ACCESS.2023.3275446
10.1109/ACCESS.2025.3547863
10.3390/s24082663
10.1016/j.jnca.2018.10.013
10.1109/JIOT.2024.3372375
10.1109/ACCESS.2021.3069137
10.1109/ACCESS.2023.3317516
10.3390/app11156832
10.1016/j.jmsy.2021.08.012
10.1016/j.eswa.2021.114598
10.1109/TII.2020.3005532
10.1109/ACCESS.2024.3385636
10.1155/2022/2796167
10.1109/JIOT.2023.3291367
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3582671
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 36018
ExternalDocumentID 10_1109_JIOT_2025_3582671
11049055
Genre orig-research
GrantInformation_xml – fundername: American University of Sharjah
  grantid: PE2401
  funderid: 10.13039/501100002724
– fundername: Open Access Program
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
IFIPE
IPLJI
JAVBF
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
M43
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-4607a8ab15bcb85e181dc9392af1e633b31c30f757598cb4e5e3316020eed96e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001556085600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Thu Nov 20 15:52:06 EST 2025
Sat Nov 29 07:38:09 EST 2025
Wed Aug 27 07:37:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-4607a8ab15bcb85e181dc9392af1e633b31c30f757598cb4e5e3316020eed96e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2695-5836
0000-0002-2343-2848
0000-0002-5169-0860
OpenAccessLink https://ieeexplore.ieee.org/document/11049055
PQID 3247409368
PQPubID 2040421
PageCount 18
ParticipantIDs ieee_primary_11049055
proquest_journals_3247409368
crossref_primary_10_1109_JIOT_2025_3582671
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref18
Kazemi (ref19) 2023; 5
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Matzka (ref37) 2020
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1007/s40436-022-00433-x
– ident: ref15
  doi: 10.1038/s41598-023-38887-z
– ident: ref33
  doi: 10.1109/ACCESS.2024.3454548
– ident: ref5
  doi: 10.1007/s10845-022-01960-x
– ident: ref17
  doi: 10.23919/JSC.2023.0011
– volume: 5
  start-page: 1
  year: 2023
  ident: ref19
  article-title: Application of XGB-based metaheuristic techniques for prediction time-to-failed of mining machinery
  publication-title: Syst. Soft Comput.
– ident: ref11
  doi: 10.1109/JIOT.2021.3097269
– ident: ref27
  doi: 10.1016/j.ifacol.2020.11.028
– ident: ref18
  doi: 10.1016/j.iswa.2023.200196
– ident: ref1
  doi: 10.1109/JIOT.2021.3050441
– ident: ref20
  doi: 10.1007/s42452-021-04598-1
– ident: ref29
  doi: 10.1109/ACCESS.2023.3289076
– volume-title: Predictive maintenance dataset AI4I 2020
  year: 2020
  ident: ref37
– ident: ref14
  doi: 10.3390/su14063387
– ident: ref23
  doi: 10.1016/j.ress.2021.108191
– ident: ref31
  doi: 10.1109/JIOT.2024.3436110
– ident: ref12
  doi: 10.3390/machines11030322
– ident: ref13
  doi: 10.1108/JMTM-02-2022-0093
– ident: ref26
  doi: 10.1016/j.cie.2020.106948
– ident: ref10
  doi: 10.1016/j.cie.2023.109566
– ident: ref30
  doi: 10.1109/ACCESS.2024.3359424
– ident: ref35
  doi: 10.1016/j.aej.2023.12.065
– ident: ref9
  doi: 10.1109/ACCESS.2021.3069256
– ident: ref3
  doi: 10.1109/ACCESS.2023.3275446
– ident: ref34
  doi: 10.1109/ACCESS.2025.3547863
– ident: ref25
  doi: 10.3390/s24082663
– ident: ref4
  doi: 10.1016/j.jnca.2018.10.013
– ident: ref32
  doi: 10.1109/JIOT.2024.3372375
– ident: ref7
  doi: 10.1109/ACCESS.2021.3069137
– ident: ref2
  doi: 10.1109/ACCESS.2023.3317516
– ident: ref8
  doi: 10.3390/app11156832
– ident: ref28
  doi: 10.1016/j.jmsy.2021.08.012
– ident: ref6
  doi: 10.1016/j.eswa.2021.114598
– ident: ref21
  doi: 10.1109/TII.2020.3005532
– ident: ref22
  doi: 10.1109/ACCESS.2024.3385636
– ident: ref36
  doi: 10.1155/2022/2796167
– ident: ref24
  doi: 10.1109/JIOT.2023.3291367
SSID ssj0001105196
Score 2.350372
Snippet Cloud computing enables users to access and utilize various computing resources over the internet, including servers, storage, databases, and analytics. This...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 36001
SubjectTerms Accuracy
Algorithms
Brokenstick regression multiobjective dragonfly optimization
cloud
Cloud computing
Data analysis
Data collection
Downtime
Error analysis
Error reduction
Fault diagnosis
Heuristic methods
Industrial applications
Industrial Internet of Things
Industrial IoT
Internet of Things
Machine learning algorithms
Maintenance
Multiple objective analysis
Optimization
Prediction algorithms
Predictive maintenance
predictive maintenance optimization
Real-time systems
Recall
Scalability
Title Optimizing Predictive Maintenance in Industrial IoT Cloud Using Dragonfly Algorithm
URI https://ieeexplore.ieee.org/document/11049055
https://www.proquest.com/docview/3247409368
Volume 12
WOSCitedRecordID wos001556085600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UePAifmBE0fTgyWTQ0q0fR4ISMRFIxITb0rUdksBmBpjoX29bRogxHrztsC3Le3vv917fxw-AW5RqjRUPg0gSFoSUy4BragIZKirbgiaIKE82wQYDPpmIUTms7mdhjDG--cw03aWv5etcrd1RWctCVShQFO2DfcboZlhrd6CCXTRCy8olRqL11B-ObQbYjppuHJQy_AN7PJnKLw_sYaVX_ecHHYOjMn6EnY3CT8CeyU5BdcvNAEtTPQMvQ-sLFrMvi0xwVLhqjPNr8Fm6_RBuyYaBswzuiDtgPx_D7jxfa-i7COB9IaduZOQTdubTvJit3hY18Np7GHcfg5JAIVBtgVdW9IhJLhMcJSrhkbForpWwEZFMsaGEJAQrglLmSDq5SkITGUIwtRGkRU5BDTkHlSzPzAWAmKSJRowxQkSIjZYoVRqTRClujZiwOrjbijZ-3-zJiH1-gUTs9BA7PcSlHuqg5mS5u7EUYx00ttqIS1NaxjbiYzYJJZRf_vHYFTh0b990fjVAZVWszTU4UB-r2bK48X_JN3hSvCE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gV58i-szB09CNdm0eRzFB66PVXAFbyVN0nVBt1J3Bf31Jtksi4gHbz20tMx05pvJPD6AA1waQ7RIk0xRnqRMqEQYZhOVaqaakhWY6kA2wdtt8fQk7-OwepiFsdaG5jN75C9DLd9UeuiPyo4dVKUSZ9k0zHrqrDiuNTlSIT4eYbF2SbA8vmrddVwO2MyO_EAo4-QH-gQ6lV8-OADLxdI_P2kZFmMEiU5GKl-BKdtfhaUxOwOKxroGD3fOG7z2vhw2ofva12O8Z0O3ym-I8Gs2LOr10YS6A7WqDjp9qYYGhT4CdFarrh8a-UQnL92q7g2eX9fh8eK8c3qZRAqFRDclGTjhY66EKkhW6EJk1uG50dLFRKokllFaUKIpLrmn6RS6SG1mKSXMxZAOOyWzdANm-lXfbgIitCwM5pxTKlNijcKlNoQWWgtnxpQ34HAs2vxttCkjDxkGlrnXQ-71kEc9NGDdy3JyYxRjA3bG2sijMb3nLubjLg2lTGz98dg-zF92bm_ym1b7ehsW_JtGfWA7MDOoh3YX5vTHoPde74U_5htxXb9q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Predictive+Maintenance+in+Industrial+IoT+Cloud+Using+Dragonfly+Algorithm&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Rani+S%2C+Sheeja&rft.au=AbuRukba%2C+Raafat&rft.au=El-Fakih%2C+Khaled&rft.date=2025-09-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=12&rft.issue=17&rft.spage=36001&rft.epage=36018&rft_id=info:doi/10.1109%2FJIOT.2025.3582671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3582671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon