Optimizing Predictive Maintenance in Industrial IoT Cloud Using Dragonfly Algorithm
Cloud computing enables users to access and utilize various computing resources over the internet, including servers, storage, databases, and analytics. This paradigm offers flexibility, scalability, and cost efficiency, making it a critical technology for numerous applications. In the realm of the...
Gespeichert in:
| Veröffentlicht in: | IEEE internet of things journal Jg. 12; H. 17; S. 36001 - 36018 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2327-4662, 2327-4662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cloud computing enables users to access and utilize various computing resources over the internet, including servers, storage, databases, and analytics. This paradigm offers flexibility, scalability, and cost efficiency, making it a critical technology for numerous applications. In the realm of the Internet of Things (IoT), cloud computing provides a scalable and flexible infrastructure for managing the vast amount of data generated by IoT devices. Specifically, in Industrial IoT applications (IIoT), predictive maintenance has become a key focus, leveraging advanced technologies to forecast equipment failures and minimize downtime. However, achieving high accuracy in fault prediction remains a challenge. To address this, we propose a novel approach called Brokenstick Regression-based multiobjective dragonfly predictive optimization (BR-MDPO). This method aims to optimize predictive maintenance with enhanced accuracy and execution time (ET). The process begins with IoT devices collecting data, such as vibration, temperature, speed, torque, and operational hours, from industrial machinery. This data is then sent to centralized cloud data centers for predictive analysis. The BR-MDPO technique utilizes the Multiobjective Dragonfly Optimization algorithm, a metaheuristic inspired by the natural behavior of dragonflies, to solve multiobjective optimization problems. Brokenstick regression analyzes the data to optimize various objective functions. The technique identifies potential failures, facilitating proactive maintenance and informed decision-making to ensure continuous productivity. The proposed method shows a significant improvement in accuracy, precision, and recall by 7%, 5%, and 6%, respectively. The observed results reveal a 6%, 4%, and 5% enhancement in the accuracy, precision, and recall. Furthermore, the proposed technique realizes a substantial reduction in error rate by 68%, 15%, and 13% reduction in ET as well as latency compared to conventional methods. |
|---|---|
| AbstractList | Cloud computing enables users to access and utilize various computing resources over the internet, including servers, storage, databases, and analytics. This paradigm offers flexibility, scalability, and cost efficiency, making it a critical technology for numerous applications. In the realm of the Internet of Things (IoT), cloud computing provides a scalable and flexible infrastructure for managing the vast amount of data generated by IoT devices. Specifically, in Industrial IoT applications (IIoT), predictive maintenance has become a key focus, leveraging advanced technologies to forecast equipment failures and minimize downtime. However, achieving high accuracy in fault prediction remains a challenge. To address this, we propose a novel approach called Brokenstick Regression-based multiobjective dragonfly predictive optimization (BR-MDPO). This method aims to optimize predictive maintenance with enhanced accuracy and execution time (ET). The process begins with IoT devices collecting data, such as vibration, temperature, speed, torque, and operational hours, from industrial machinery. This data is then sent to centralized cloud data centers for predictive analysis. The BR-MDPO technique utilizes the Multiobjective Dragonfly Optimization algorithm, a metaheuristic inspired by the natural behavior of dragonflies, to solve multiobjective optimization problems. Brokenstick regression analyzes the data to optimize various objective functions. The technique identifies potential failures, facilitating proactive maintenance and informed decision-making to ensure continuous productivity. The proposed method shows a significant improvement in accuracy, precision, and recall by 7%, 5%, and 6%, respectively. The observed results reveal a 6%, 4%, and 5% enhancement in the accuracy, precision, and recall. Furthermore, the proposed technique realizes a substantial reduction in error rate by 68%, 15%, and 13% reduction in ET as well as latency compared to conventional methods. |
| Author | AbuRukba, Raafat El-Fakih, Khaled Rani S, Sheeja |
| Author_xml | – sequence: 1 givenname: Sheeja orcidid: 0000-0002-5169-0860 surname: Rani S fullname: Rani S, Sheeja email: sheejaranis@gmail.com organization: Computer Science and Engineering Department, American University of Sharjah, Sharjah, UAE – sequence: 2 givenname: Raafat orcidid: 0000-0003-2695-5836 surname: AbuRukba fullname: AbuRukba, Raafat email: raburukba@aus.edu organization: Computer Science and Engineering Department, American University of Sharjah, Sharjah, UAE – sequence: 3 givenname: Khaled orcidid: 0000-0002-2343-2848 surname: El-Fakih fullname: El-Fakih, Khaled email: kelfakih@aus.edu organization: Computer Science and Engineering Department, American University of Sharjah, Sharjah, UAE |
| BookMark | eNpNkF1LwzAUhoMoOOd-gOBFwOvNfDRpcznm12Qywe06pOnpzOiSmbbC_PW2bKBX51y8z3sOzxU698EDQjeUTCgl6v51vlxNGGFiwkXGZErP0IBxlo4TKdn5v_0Sjep6SwjpMEGVHKCP5b5xO_fj_Aa_Ryicbdw34DfjfAPeeAvYeTz3RVs30ZkKz8MKz6rQFnhd99BDNJvgy-qAp9UmRNd87q7RRWmqGkanOUTrp8fV7GW8WD7PZ9PF2DJFm-4hkprM5FTkNs8E0IwWVnHFTElBcp5zajkpU5EKldk8AQGcU0kYASiUBD5Ed8fefQxfLdSN3oY2-u6k5ixJE6K4zLoUPaZsDHUdodT76HYmHjQlutene32616dP-jrm9sg4APjLU5IoIgT_BYb8bPk |
| CODEN | IITJAU |
| Cites_doi | 10.1007/s40436-022-00433-x 10.1038/s41598-023-38887-z 10.1109/ACCESS.2024.3454548 10.1007/s10845-022-01960-x 10.23919/JSC.2023.0011 10.1109/JIOT.2021.3097269 10.1016/j.ifacol.2020.11.028 10.1016/j.iswa.2023.200196 10.1109/JIOT.2021.3050441 10.1007/s42452-021-04598-1 10.1109/ACCESS.2023.3289076 10.3390/su14063387 10.1016/j.ress.2021.108191 10.1109/JIOT.2024.3436110 10.3390/machines11030322 10.1108/JMTM-02-2022-0093 10.1016/j.cie.2020.106948 10.1016/j.cie.2023.109566 10.1109/ACCESS.2024.3359424 10.1016/j.aej.2023.12.065 10.1109/ACCESS.2021.3069256 10.1109/ACCESS.2023.3275446 10.1109/ACCESS.2025.3547863 10.3390/s24082663 10.1016/j.jnca.2018.10.013 10.1109/JIOT.2024.3372375 10.1109/ACCESS.2021.3069137 10.1109/ACCESS.2023.3317516 10.3390/app11156832 10.1016/j.jmsy.2021.08.012 10.1016/j.eswa.2021.114598 10.1109/TII.2020.3005532 10.1109/ACCESS.2024.3385636 10.1155/2022/2796167 10.1109/JIOT.2023.3291367 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2025.3582671 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 36018 |
| ExternalDocumentID | 10_1109_JIOT_2025_3582671 11049055 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: American University of Sharjah grantid: PE2401 funderid: 10.13039/501100002724 – fundername: Open Access Program |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL IFIPE IPLJI JAVBF OCL PQQKQ RIA RIE AAYXX CITATION M43 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-4607a8ab15bcb85e181dc9392af1e633b31c30f757598cb4e5e3316020eed96e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001556085600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Thu Nov 20 15:52:06 EST 2025 Sat Nov 29 07:38:09 EST 2025 Wed Aug 27 07:37:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-4607a8ab15bcb85e181dc9392af1e633b31c30f757598cb4e5e3316020eed96e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2695-5836 0000-0002-2343-2848 0000-0002-5169-0860 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/11049055 |
| PQID | 3247409368 |
| PQPubID | 2040421 |
| PageCount | 18 |
| ParticipantIDs | ieee_primary_11049055 proquest_journals_3247409368 crossref_primary_10_1109_JIOT_2025_3582671 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref18 Kazemi (ref19) 2023; 5 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Matzka (ref37) 2020 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref16 doi: 10.1007/s40436-022-00433-x – ident: ref15 doi: 10.1038/s41598-023-38887-z – ident: ref33 doi: 10.1109/ACCESS.2024.3454548 – ident: ref5 doi: 10.1007/s10845-022-01960-x – ident: ref17 doi: 10.23919/JSC.2023.0011 – volume: 5 start-page: 1 year: 2023 ident: ref19 article-title: Application of XGB-based metaheuristic techniques for prediction time-to-failed of mining machinery publication-title: Syst. Soft Comput. – ident: ref11 doi: 10.1109/JIOT.2021.3097269 – ident: ref27 doi: 10.1016/j.ifacol.2020.11.028 – ident: ref18 doi: 10.1016/j.iswa.2023.200196 – ident: ref1 doi: 10.1109/JIOT.2021.3050441 – ident: ref20 doi: 10.1007/s42452-021-04598-1 – ident: ref29 doi: 10.1109/ACCESS.2023.3289076 – volume-title: Predictive maintenance dataset AI4I 2020 year: 2020 ident: ref37 – ident: ref14 doi: 10.3390/su14063387 – ident: ref23 doi: 10.1016/j.ress.2021.108191 – ident: ref31 doi: 10.1109/JIOT.2024.3436110 – ident: ref12 doi: 10.3390/machines11030322 – ident: ref13 doi: 10.1108/JMTM-02-2022-0093 – ident: ref26 doi: 10.1016/j.cie.2020.106948 – ident: ref10 doi: 10.1016/j.cie.2023.109566 – ident: ref30 doi: 10.1109/ACCESS.2024.3359424 – ident: ref35 doi: 10.1016/j.aej.2023.12.065 – ident: ref9 doi: 10.1109/ACCESS.2021.3069256 – ident: ref3 doi: 10.1109/ACCESS.2023.3275446 – ident: ref34 doi: 10.1109/ACCESS.2025.3547863 – ident: ref25 doi: 10.3390/s24082663 – ident: ref4 doi: 10.1016/j.jnca.2018.10.013 – ident: ref32 doi: 10.1109/JIOT.2024.3372375 – ident: ref7 doi: 10.1109/ACCESS.2021.3069137 – ident: ref2 doi: 10.1109/ACCESS.2023.3317516 – ident: ref8 doi: 10.3390/app11156832 – ident: ref28 doi: 10.1016/j.jmsy.2021.08.012 – ident: ref6 doi: 10.1016/j.eswa.2021.114598 – ident: ref21 doi: 10.1109/TII.2020.3005532 – ident: ref22 doi: 10.1109/ACCESS.2024.3385636 – ident: ref36 doi: 10.1155/2022/2796167 – ident: ref24 doi: 10.1109/JIOT.2023.3291367 |
| SSID | ssj0001105196 |
| Score | 2.350372 |
| Snippet | Cloud computing enables users to access and utilize various computing resources over the internet, including servers, storage, databases, and analytics. This... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 36001 |
| SubjectTerms | Accuracy Algorithms Brokenstick regression multiobjective dragonfly optimization cloud Cloud computing Data analysis Data collection Downtime Error analysis Error reduction Fault diagnosis Heuristic methods Industrial applications Industrial Internet of Things Industrial IoT Internet of Things Machine learning algorithms Maintenance Multiple objective analysis Optimization Prediction algorithms Predictive maintenance predictive maintenance optimization Real-time systems Recall Scalability |
| Title | Optimizing Predictive Maintenance in Industrial IoT Cloud Using Dragonfly Algorithm |
| URI | https://ieeexplore.ieee.org/document/11049055 https://www.proquest.com/docview/3247409368 |
| Volume | 12 |
| WOSCitedRecordID | wos001556085600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UePAifmBE0fTgyWTQ0q0fR4ISMRFIxITb0rUdksBmBpjoX29bRogxHrztsC3Le3vv917fxw-AW5RqjRUPg0gSFoSUy4BragIZKirbgiaIKE82wQYDPpmIUTms7mdhjDG--cw03aWv5etcrd1RWctCVShQFO2DfcboZlhrd6CCXTRCy8olRqL11B-ObQbYjppuHJQy_AN7PJnKLw_sYaVX_ecHHYOjMn6EnY3CT8CeyU5BdcvNAEtTPQMvQ-sLFrMvi0xwVLhqjPNr8Fm6_RBuyYaBswzuiDtgPx_D7jxfa-i7COB9IaduZOQTdubTvJit3hY18Np7GHcfg5JAIVBtgVdW9IhJLhMcJSrhkbForpWwEZFMsaGEJAQrglLmSDq5SkITGUIwtRGkRU5BDTkHlSzPzAWAmKSJRowxQkSIjZYoVRqTRClujZiwOrjbijZ-3-zJiH1-gUTs9BA7PcSlHuqg5mS5u7EUYx00ttqIS1NaxjbiYzYJJZRf_vHYFTh0b990fjVAZVWszTU4UB-r2bK48X_JN3hSvCE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gV58i-szB09CNdm0eRzFB66PVXAFbyVN0nVBt1J3Bf31Jtksi4gHbz20tMx05pvJPD6AA1waQ7RIk0xRnqRMqEQYZhOVaqaakhWY6kA2wdtt8fQk7-OwepiFsdaG5jN75C9DLd9UeuiPyo4dVKUSZ9k0zHrqrDiuNTlSIT4eYbF2SbA8vmrddVwO2MyO_EAo4-QH-gQ6lV8-OADLxdI_P2kZFmMEiU5GKl-BKdtfhaUxOwOKxroGD3fOG7z2vhw2ofva12O8Z0O3ym-I8Gs2LOr10YS6A7WqDjp9qYYGhT4CdFarrh8a-UQnL92q7g2eX9fh8eK8c3qZRAqFRDclGTjhY66EKkhW6EJk1uG50dLFRKokllFaUKIpLrmn6RS6SG1mKSXMxZAOOyWzdANm-lXfbgIitCwM5pxTKlNijcKlNoQWWgtnxpQ34HAs2vxttCkjDxkGlrnXQ-71kEc9NGDdy3JyYxRjA3bG2sijMb3nLubjLg2lTGz98dg-zF92bm_ym1b7ehsW_JtGfWA7MDOoh3YX5vTHoPde74U_5htxXb9q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Predictive+Maintenance+in+Industrial+IoT+Cloud+Using+Dragonfly+Algorithm&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Rani+S%2C+Sheeja&rft.au=AbuRukba%2C+Raafat&rft.au=El-Fakih%2C+Khaled&rft.date=2025-09-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=12&rft.issue=17&rft.spage=36001&rft.epage=36018&rft_id=info:doi/10.1109%2FJIOT.2025.3582671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3582671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |