An Adaptive Partial Sensitivity Updating Scheme for Fast Nonlinear Model Predictive Control
In recent years, efficient optimization algorithms for nonlinear model predictive control (NMPC) have been proposed, that significantly reduce the online computational time. In particular, the direct multiple shooting and the sequential quadratic programming (SQP) are used to efficiently solve nonli...
Saved in:
| Published in: | IEEE transactions on automatic control Vol. 64; no. 7; pp. 2712 - 2726 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9286, 1558-2523 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent years, efficient optimization algorithms for nonlinear model predictive control (NMPC) have been proposed, that significantly reduce the online computational time. In particular, the direct multiple shooting and the sequential quadratic programming (SQP) are used to efficiently solve nonlinear programming (NLP) problems arising from continuous-time NMPC applications. One of the computationally demanding steps for the online optimization is the computation of sensitivities of the nonlinear dynamics at every sampling instant, especially for systems of large dimensions, strong stiffness, and when using long prediction horizons. In this paper, within the algorithmic framework of the real-time iteration scheme based on multiple shooting, an inexact sensitivity updating scheme is proposed, that performs a partial update of the Jacobian of the constraints in the NLP. Such update is triggered by using a curvature-like measure of nonlinearity, so that only sensitivities exhibiting highly nonlinear behavior are updated, thus adapting to system operating conditions and possibly reducing the computational burden. An advanced tuning strategy for the updating scheme is provided to automatically determine the number of sensitivities being updated, with a guaranteed bounded error on the quadratic programming solution. Numerical and control performance of the scheme is evaluated by means of two simulation examples performed on a dedicated implementation. Local convergence analysis is also presented and a tunable convergence rate is proven, when applied to the SQP method. |
|---|---|
| AbstractList | In recent years, efficient optimization algorithms for nonlinear model predictive control (NMPC) have been proposed, that significantly reduce the online computational time. In particular, the direct multiple shooting and the sequential quadratic programming (SQP) are used to efficiently solve nonlinear programming (NLP) problems arising from continuous-time NMPC applications. One of the computationally demanding steps for the online optimization is the computation of sensitivities of the nonlinear dynamics at every sampling instant, especially for systems of large dimensions, strong stiffness, and when using long prediction horizons. In this paper, within the algorithmic framework of the real-time iteration scheme based on multiple shooting, an inexact sensitivity updating scheme is proposed, that performs a partial update of the Jacobian of the constraints in the NLP. Such update is triggered by using a curvature-like measure of nonlinearity, so that only sensitivities exhibiting highly nonlinear behavior are updated, thus adapting to system operating conditions and possibly reducing the computational burden. An advanced tuning strategy for the updating scheme is provided to automatically determine the number of sensitivities being updated, with a guaranteed bounded error on the quadratic programming solution. Numerical and control performance of the scheme is evaluated by means of two simulation examples performed on a dedicated implementation. Local convergence analysis is also presented and a tunable convergence rate is proven, when applied to the SQP method. |
| Author | Chen, Yutao Bruschetta, Mattia Cuccato, Davide Beghi, Alessandro |
| Author_xml | – sequence: 1 givenname: Yutao orcidid: 0000-0001-6748-2866 surname: Chen fullname: Chen, Yutao email: yutao.chen@dei.unipd.it organization: Department of Information Engineering, University of Padova, Padova, Italy – sequence: 2 givenname: Mattia orcidid: 0000-0003-0769-4191 surname: Bruschetta fullname: Bruschetta, Mattia email: mattia.bruschetta@dei.unipd.it organization: Department of Information Engineering, University of Padova, Padova, Italy – sequence: 3 givenname: Davide orcidid: 0000-0002-9718-7291 surname: Cuccato fullname: Cuccato, Davide email: davide.cuccato@dei.unipd.it organization: Department of Information Engineering, University of Padova, Padova, Italy – sequence: 4 givenname: Alessandro orcidid: 0000-0003-2252-2179 surname: Beghi fullname: Beghi, Alessandro email: beghi@dei.unipd.it organization: Department of Information Engineering, University of Padova, Padova, Italy |
| BookMark | eNp9UE1LAzEQDaJgW70LXgKet2ay2TR7LMUv8KNQPXlYYnaikW1Ss6nQf29qxYMHT8PMe29m3huSfR88EnICbAzA6vPH6WzMGagxV3JSg9wjA6gqVfCKl_tkwDJU1Bk7JMO-f8-tFAIG5Hnq6bTVq-Q-kc51TE53dIG-d3ni0oY-rVqdnH-lC_OGS6Q2RHqp-0Tvg--cRx3pXWixo_OIrTPfe2bBpxi6I3Jgddfj8U8dkafLi8fZdXH7cHUzm94WhteQCiEMTmwlNExqrDTWzJhWCGGVBstrq6QV2ZGo4AUASmGMgNYaLpELy2BSjsjZbu8qho819ql5D-vo88mGc6GklIpVmSV3LBND30e0jXEpW9v-ql3XAGu2QTY5yGYbZPMTZBayP8JVdEsdN_9JTncSh4i_dJUt1KUqvwDNgX-h |
| CODEN | IETAA9 |
| CitedBy_id | crossref_primary_10_1016_j_jfranklin_2022_03_013 crossref_primary_10_1109_ACCESS_2021_3060018 crossref_primary_10_1109_TMECH_2022_3163692 crossref_primary_10_1109_LCSYS_2024_3408711 crossref_primary_10_1016_j_asr_2023_05_051 crossref_primary_10_1109_TSMC_2022_3177271 crossref_primary_10_1080_00207179_2022_2087739 crossref_primary_10_1007_s12239_024_00029_3 crossref_primary_10_1109_TCST_2020_3022462 crossref_primary_10_3390_s21165372 crossref_primary_10_1049_iet_cta_2019_0168 crossref_primary_10_1109_TIV_2022_3153633 |
| Cites_doi | 10.1016/j.ifacol.2017.08.1528 10.1080/1055678021000060829 10.1016/S1474-6670(17)43213-7 10.1007/BF01580110 10.1109/CDC.2017.8264305 10.1109/ICIF.2005.1591858 10.1016/j.automatica.2008.06.011 10.3182/20080706-5-KR-1001.00329 10.1080/00207179.2016.1222553 10.1016/S0959-1524(01)00023-3 10.1137/1.9780898718935.ch1 10.1109/TCST.2012.2231960 10.1016/j.ifacol.2015.11.258 10.1109/CCA.2016.7588014 10.1007/3-540-10861-0 10.1021/ie020783s 10.1016/S1474-6670(17)61205-9 10.1111/j.2517-6161.1980.tb01094.x 10.1007/BFb0067703 10.1007/978-3-642-01094-1_37 10.3182/20120823-5-NL-3013.00085 10.1145/838250.838251 10.1016/j.jprocont.2012.01.008 10.1137/1.9780898719383 10.1080/10556780903027500 10.5772/37638 10.1016/j.automatica.2011.08.020 10.1016/S1570-7946(04)80055-5 10.1002/oca.2152 10.1137/120876915 10.1016/j.ifacol.2016.10.139 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TAC.2018.2867916 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 2726 |
| ExternalDocumentID | 10_1109_TAC_2018_2867916 8451938 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c291t-44ce7f54a179e5ae90ccd444f8a1f29f86f4791451b11134cc41dfc26e24f0173 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473489700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9286 |
| IngestDate | Mon Jun 30 10:22:17 EDT 2025 Sat Nov 29 05:40:51 EST 2025 Tue Nov 18 20:57:51 EST 2025 Wed Aug 27 05:52:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-44ce7f54a179e5ae90ccd444f8a1f29f86f4791451b11134cc41dfc26e24f0173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9718-7291 0000-0003-2252-2179 0000-0001-6748-2866 0000-0003-0769-4191 |
| PQID | 2248666805 |
| PQPubID | 85475 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TAC_2018_2867916 crossref_primary_10_1109_TAC_2018_2867916 proquest_journals_2248666805 ieee_primary_8451938 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 li (ref33) 0 ref32 ref10 guay (ref29) 1996 ref2 (ref39) 2017 ref1 kühl (ref11) 2007 ref17 ref19 fiacco (ref36) 1983 ref18 enns (ref42) 2010 andersson (ref38) 2013 ref24 ref23 leineweber (ref7) 1999 ref26 ref25 chen (ref20) 0 ref41 ref22 ref44 wirsching (ref16) 0 ref21 ref43 ref28 ref27 nocedal (ref8) 2006 diehl (ref4) 2001 ref9 ref3 niu (ref30) 0 ref6 ref5 ref40 |
| References_xml | – ident: ref22 doi: 10.1016/j.ifacol.2017.08.1528 – ident: ref43 doi: 10.1080/1055678021000060829 – ident: ref32 doi: 10.1016/S1474-6670(17)43213-7 – year: 2017 ident: ref39 article-title: HPIPM – ident: ref35 doi: 10.1007/BF01580110 – year: 2006 ident: ref8 publication-title: Numerical Optimization – start-page: 1780 year: 0 ident: ref20 article-title: A fast nonlinear model predictive control strategy for real-time motion control of mechanical systems publication-title: Proc IEEE Int Conf Adv Intell Mechatronics – ident: ref21 doi: 10.1109/CDC.2017.8264305 – start-page: 591 year: 0 ident: ref16 article-title: Fast nmpc of a chain of masses connected by springs publication-title: Proc IEEE Int Conf Control Appl IEEE Int Symp Intell Control Comput Aided Control Syst Des – ident: ref31 doi: 10.1109/ICIF.2005.1591858 – ident: ref5 doi: 10.1016/j.automatica.2008.06.011 – ident: ref17 doi: 10.3182/20080706-5-KR-1001.00329 – year: 2001 ident: ref4 article-title: Real-time optimization for large scale nonlinear processes – year: 2007 ident: ref11 publication-title: MUSCOD-II User's Manual – ident: ref14 doi: 10.1080/00207179.2016.1222553 – ident: ref13 doi: 10.1016/S0959-1524(01)00023-3 – ident: ref15 doi: 10.1137/1.9780898718935.ch1 – ident: ref41 doi: 10.1109/TCST.2012.2231960 – ident: ref44 doi: 10.1016/j.ifacol.2015.11.258 – ident: ref24 doi: 10.1109/CCA.2016.7588014 – year: 1983 ident: ref36 publication-title: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming – ident: ref10 doi: 10.1007/3-540-10861-0 – ident: ref27 doi: 10.1021/ie020783s – ident: ref1 doi: 10.1016/S1474-6670(17)61205-9 – ident: ref28 doi: 10.1111/j.2517-6161.1980.tb01094.x – ident: ref3 doi: 10.1007/BFb0067703 – ident: ref23 doi: 10.1007/978-3-642-01094-1_37 – start-page: 1 year: 0 ident: ref30 article-title: Curvature nonlinearity measure and filter divergence detector for nonlinear tracking problems publication-title: Proc 11th Inter Conf Info Fusion – ident: ref25 doi: 10.3182/20120823-5-NL-3013.00085 – start-page: 1073 year: 0 ident: ref33 article-title: Measure of nonlinearity for stochastic systems publication-title: Proc 15th Int Conf Inf Fusion – ident: ref9 doi: 10.1145/838250.838251 – year: 2013 ident: ref38 article-title: A general-purpose software framework for dynamic optimization – ident: ref18 doi: 10.1016/j.jprocont.2012.01.008 – ident: ref2 doi: 10.1137/1.9780898719383 – ident: ref34 doi: 10.1080/10556780903027500 – ident: ref6 doi: 10.5772/37638 – ident: ref12 doi: 10.1016/j.automatica.2011.08.020 – ident: ref26 doi: 10.1016/S1570-7946(04)80055-5 – ident: ref40 doi: 10.1002/oca.2152 – year: 2010 ident: ref42 publication-title: It's A Nonlinear World – ident: ref37 doi: 10.1137/120876915 – ident: ref19 doi: 10.1016/j.ifacol.2016.10.139 – year: 1996 ident: ref29 article-title: Measurement of nonlinearity in chemical process control – year: 1999 ident: ref7 article-title: Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models |
| SSID | ssj0016441 |
| Score | 2.443209 |
| Snippet | In recent years, efficient optimization algorithms for nonlinear model predictive control (NMPC) have been proposed, that significantly reduce the online... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2712 |
| SubjectTerms | Adaptive control Algorithms Computer simulation Computing time Convergence Curvature Dynamical systems Error detection Iterative methods Jacobian matrices Nonlinear control Nonlinear dynamics Nonlinear model predictive control (NMPC) Nonlinear programming Nonlinearity Optimization partial sensitivity update optimization algorithms Prediction algorithms Predictive control Quadratic programming real-time iteration (RTI) Sensitivity Stiffness Tuning |
| Title | An Adaptive Partial Sensitivity Updating Scheme for Fast Nonlinear Model Predictive Control |
| URI | https://ieeexplore.ieee.org/document/8451938 https://www.proquest.com/docview/2248666805 |
| Volume | 64 |
| WOSCitedRecordID | wos000473489700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na8IwFH-o7LAd9uXG3NzIYZfBqrambXIUmewkggrCDiVNkzFwVbTu7997bS3CxmC3HpLQvo-8l76X3w_g0U0w6iWeckTs4gHF7fuOCoV0QhtgdisVWpnNySbC8VgsFnJSg-fqLowxJm8-Mx16zGv5yUrv6FdZVxAWSl_UoR6GQXFXq6oYUFwvdl10YE9UJcme7M4GQ-rhEh2P0OWI2fwgBOWcKj824jy6jM7-917ncFpmkWxQqP0Caia9hJMDbMEmvA1SNkjUmrYzNiEDwQlTalcv-CLYfE03G9J3NkW9fRqG2SsbqW3GxgV6htowIkpbssmGijn5OsOisf0K5qOX2fDVKZkUHO1JN3M41ya0PlfofsZXRva0TjjnVijXetKKwHKUDH5GTNTzXGvuJlZ7gfG4RZ_tX0MjXaXmBlg_plqhJ4OQx1wYP7Y-hlnftYZwXjRvQXcv3EiXMOPEdrGM8uNGT0aojojUEZXqaMFTNWNdQGz8MbZJ4q_GlZJvQXuvv6j0wW2EyYnAw5no-be_z7qDY1xbFs23bWhkm525hyP9lX1sNw-5eX0DfvPLug |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBVxXrcw9eBNM26SbZPZZiUdRSaAuCh7DZ7IpQY0mrv9-ZJA2CInjLYTePmZ2d2czM9wFcugl6vcRTjohdPKC4Hd9RoZBOaAOMbqXCVWZzsolwMBBPT3K4AtdVL4wxJi8-M026zHP5ybv-oF9lLUFYKB2xCmvEnFV2a1U5A_Lsxb6LJuyJKinZlq1xt0dVXKLpEb4ccZt_c0I5q8qPrTj3L_2d_73ZLmyXcSTrForfgxWT7sPWN3TBOjx3U9ZN1Iw2NDakJYITRlSwXjBGsMmMehvSFzZCzb0ZhvEr66v5gg0K_AyVMaJKm7JhRumc_D69orT9ACb9m3Hv1im5FBztSXfhcK5NaH2u0ACNr4xsa51wzq1QrvWkFYHlKBn8jJjI57nW3E2s9gLjcYtW2zmEWvqemiNgnZiyhZ4MQh5zYfzY-uhofdcaQnrRvAGtpXAjXQKNE9_FNMoPHG0ZoToiUkdUqqMBV9WMWQGy8cfYOom_GldKvgGnS_1FpRXOIwxPBB7PRNs__n3WBWzcjh8fooe7wf0JbOJzZFGKewq1RfZhzmBdfy5e59l5vtS-AEZKzwM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Partial+Sensitivity+Updating+Scheme+for+Fast+Nonlinear+Model+Predictive+Control&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Chen%2C+Yutao&rft.au=Bruschetta%2C+Mattia&rft.au=Cuccato%2C+Davide&rft.au=Beghi%2C+Alessandro&rft.date=2019-07-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=64&rft.issue=7&rft.spage=2712&rft.epage=2726&rft_id=info:doi/10.1109%2FTAC.2018.2867916&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2018_2867916 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |