Greedy search method for separable nonlinear models using stage Aitken gradient descent and least squares algorithms

Aitken gradient descent (AGD) algorithm takes some advantages over the standard gradient descent (SGD) and Newton methods: (1) can achieve at least quadratic convergence in general; (2) does not require the Hessian matrix inversion; (3) has less computational efforts. When using the AGD method for a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 68; číslo 8; s. 1 - 8
Hlavní autoři: Chen, Jing, Mao, Yawen, Gan, Min, Wang, Dongqing, Zhu, Quanmin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Aitken gradient descent (AGD) algorithm takes some advantages over the standard gradient descent (SGD) and Newton methods: (1) can achieve at least quadratic convergence in general; (2) does not require the Hessian matrix inversion; (3) has less computational efforts. When using the AGD method for a considered model, the iterative function should be unchanging during all the iterations. This paper proposes a hierarchical AGD algorithm for separable nonlinear models based on stage greedy method. The linear parameters are estimated using the least squares algorithm, and the nonlinear parameters are updated based on the AGD algorithm. Since the iterative function is changing at each iteration, a stage AGD algorithm is introduced. The convergence properties and simulation examples show effectiveness of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3214474