Combinatorial Limitations of Average-Radius List-Decoding

We study certain combinatorial aspects of listdecoding, motivated by the exponential gap between the known upper bound (of O(1/γ)) and lower bound (of Ω p (log(1/γ))) for the list size needed to list decode up to error fraction p with rate γ away from capacity, i.e., 1 - h(p) - γ [here p E (0, 1/2)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 60; no. 10; pp. 5827 - 5842
Main Authors: Guruswami, Venkatesan, Narayanan, Srivatsan
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study certain combinatorial aspects of listdecoding, motivated by the exponential gap between the known upper bound (of O(1/γ)) and lower bound (of Ω p (log(1/γ))) for the list size needed to list decode up to error fraction p with rate γ away from capacity, i.e., 1 - h(p) - γ [here p E (0, 1/2) and γ > 0]. Our main result is that we prove that in any binary code C ⊆ (0, 1) n of rate 1 - h(p) - γ, there must exist a set l ⊂ C of p(1/√γ) codewords such that the average distance of the points in L from their centroid is at most pn. In other words, there must exist Ω p (1/√γ) codewords with low average radius. The standard notion of list decoding corresponds to working with the maximum distance of a collection of codewords from a center instead of average distance. The average radius form is in itself quite natural; for instance, the classical Johnson bound in fact implies average-radius list-decodability. The remaining results concern the standard notion of list-decoding, and help clarify the current state of affairs regarding combinatorial bounds for list-decoding as follows. First, we give a short simple proof, over all fixed alphabets, of the above-mentioned Ω p (log(1/γ)) lower bound. Earlier, this bound followed from a complicated, more general result of Blinovsky. Second, we show that one cannot improve the Ω p (log(1/γ)) lower bound via techniques based on identifying the zero-rate regime for list-decoding of constantweight codes [this is a typical approach for negative results in coding theory, including the Ω p (log(1/γ)) list-size lower bound]. On a positive note, our Ω p (1/√γ) lower bound for average radius list-decoding circumvents this barrier. Third, we exhibit a reverse connection between the existence of constant-weight and general codes for list-decoding, showing that the best possible list-size, as a function of the gap γ of the rate to the capacity limit, is the same up to constant factors for both constant-weight codes (with weight bounded away from p) and general codes. Fourth, we give simple second moment-based proofs that w.h.p. a list-size of Ω p (1/γ) is needed for list-decoding random codes from errors as well as erasures. For random linear codes, the corresponding list-size bounds are Ω p (1/γ) for errors and expΩ p (log(1/γ)) for erasures.
AbstractList We study certain combinatorial aspects of listdecoding, motivated by the exponential gap between the known upper bound (of O(1/...)) and lower bound (of ...(log(1/...))) for the list size needed to list decode up to error fraction p with rate ... away from capacity, i.e., 1 - h(p) - ... [here p E (0, 1/2) and ... > 0]. Our main result is that we prove that in any binary code C ... (0, 1)... of rate 1 - h(p) - ..., there must exist a set l ... C of p(1/...) codewords such that the average distance of the points in L from their centroid is at most pn. In other words, there must exist ...(1/...) codewords with low average radius. The standard notion of list decoding corresponds to working with the maximum distance of a collection of codewords from a center instead of average distance. The average radius form is in itself quite natural; for instance, the classical Johnson bound in fact implies average-radius list-decodability. The remaining results concern the standard notion of list-decoding, and help clarify the current state of affairs regarding combinatorial bounds for list-decoding as follows. First, we give a short simple proof, over all fixed alphabets, of the above-mentioned ...(log(1/...)) lower bound. Earlier, this bound followed from a complicated, more general result of Blinovsky. Second, we show that one cannot improve the ...(log(1/...)) lower bound via techniques based on identifying the zero-rate regime for list-decoding of constantweight codes [this is a typical approach for negative results in coding theory, including the ...(log(1/...)) list-size lower bound]. On a positive note, our ...(1/...) lower bound for average radius list-decoding circumvents this barrier. Third, we exhibit a reverse connection between the existenc- of constant-weight and general codes for list-decoding, showing that the best possible list-size, as a function of the gap ... of the rate to the capacity limit, is the same up to constant factors for both constant-weight codes (with weight bounded away from p) and general codes. Fourth, we give simple second moment-based proofs that w.h.p. a list-size of ...(1/...) is needed for list-decoding random codes from errors as well as erasures. For random linear codes, the corresponding list-size bounds are ...(1/...) for errors and exp...(log(1/...)) for erasures. (ProQuest: ... denotes formulae/symbols omitted.)
We study certain combinatorial aspects of listdecoding, motivated by the exponential gap between the known upper bound (of O(1/γ)) and lower bound (of Ω p (log(1/γ))) for the list size needed to list decode up to error fraction p with rate γ away from capacity, i.e., 1 - h(p) - γ [here p E (0, 1/2) and γ > 0]. Our main result is that we prove that in any binary code C ⊆ (0, 1) n of rate 1 - h(p) - γ, there must exist a set l ⊂ C of p(1/√γ) codewords such that the average distance of the points in L from their centroid is at most pn. In other words, there must exist Ω p (1/√γ) codewords with low average radius. The standard notion of list decoding corresponds to working with the maximum distance of a collection of codewords from a center instead of average distance. The average radius form is in itself quite natural; for instance, the classical Johnson bound in fact implies average-radius list-decodability. The remaining results concern the standard notion of list-decoding, and help clarify the current state of affairs regarding combinatorial bounds for list-decoding as follows. First, we give a short simple proof, over all fixed alphabets, of the above-mentioned Ω p (log(1/γ)) lower bound. Earlier, this bound followed from a complicated, more general result of Blinovsky. Second, we show that one cannot improve the Ω p (log(1/γ)) lower bound via techniques based on identifying the zero-rate regime for list-decoding of constantweight codes [this is a typical approach for negative results in coding theory, including the Ω p (log(1/γ)) list-size lower bound]. On a positive note, our Ω p (1/√γ) lower bound for average radius list-decoding circumvents this barrier. Third, we exhibit a reverse connection between the existence of constant-weight and general codes for list-decoding, showing that the best possible list-size, as a function of the gap γ of the rate to the capacity limit, is the same up to constant factors for both constant-weight codes (with weight bounded away from p) and general codes. Fourth, we give simple second moment-based proofs that w.h.p. a list-size of Ω p (1/γ) is needed for list-decoding random codes from errors as well as erasures. For random linear codes, the corresponding list-size bounds are Ω p (1/γ) for errors and expΩ p (log(1/γ)) for erasures.
Author Narayanan, Srivatsan
Guruswami, Venkatesan
Author_xml – sequence: 1
  givenname: Venkatesan
  surname: Guruswami
  fullname: Guruswami, Venkatesan
  email: guruswami@cmu.edu
  organization: Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 2
  givenname: Srivatsan
  surname: Narayanan
  fullname: Narayanan, Srivatsan
  email: srivatsan.naray@gmail.com
  organization: Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
BookMark eNp9kE1rAjEQhkOxULW9F3oRel6bj9lschT7JQiFYs9hdjcrEd3YJBb67xtReuihp2GY551hnhEZ9L63hNwyOmWM6ofVYjXllMGUCxCcwwUZsrKsCi1LGJAhpUwVGkBdkVGMm9xCyfiQ6Lnf1a7H5IPD7WTpdi5hcr6PE99NZl824NoW79i6Q8zTmIpH2_jW9etrctnhNtqbcx2Tj-en1fy1WL69LOazZdFwzVIBvFaAvAPdQiUEllrTLneyltgJ1aASVUu7skFRNxWg5qhqVKhLJXhNQYzJ_WnvPvjPg43JbPwh9PmkYZJKYEwrlil5oprgYwy2M835kRTQbQ2j5qjJZE3mqMmcNeUg_RPcB7fD8P1f5O4UcdbaX1wqKY_EDwKoc3I
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2020_3041650
crossref_primary_10_1016_j_jcta_2023_105835
crossref_primary_10_1109_TIT_2024_3357703
crossref_primary_10_1109_TIT_2024_3405392
crossref_primary_10_1109_TIT_2022_3232241
crossref_primary_10_1137_24M1662126
crossref_primary_10_1109_TIT_2021_3123497
crossref_primary_10_1145_3506668
crossref_primary_10_1109_TIT_2021_3127126
crossref_primary_10_1109_TIT_2022_3194521
Cites_doi 10.1007/s11122-005-0007-5
10.1007/978-1-4615-6193-4
10.1109/18.61123
10.1109/TIT.2010.2070170
10.1109/TIT.2010.2054750
10.1134/S0032946008010031
10.1109/TIT.2010.2095170
10.1109/TIT.2013.2246813
10.1109/TIT.2007.911222
10.1007/978-3-662-04650-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2014.2343224
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 5842
ExternalDocumentID 3453367871
10_1109_TIT_2014_2343224
6866234
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation; U.S. National Science Foundation
  grantid: CCF-0963975
  funderid: 10.13039/100000001
– fundername: Packard Fellowship
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-42b84a2f49d4733a5990ff496b6af38ca837d0f5ca3bc74a92a8ba8a95832b043
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342416900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 30 05:28:28 EST 2025
Sat Nov 29 03:53:16 EST 2025
Tue Nov 18 22:26:23 EST 2025
Wed Aug 27 08:31:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Combinatorial coding theory
list error-correction
linear codes
random coding
probabilistic method
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-42b84a2f49d4733a5990ff496b6af38ca837d0f5ca3bc74a92a8ba8a95832b043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1606411981
PQPubID 36024
PageCount 16
ParticipantIDs proquest_journals_1606411981
ieee_primary_6866234
crossref_primary_10_1109_TIT_2014_2343224
crossref_citationtrail_10_1109_TIT_2014_2343224
PublicationCentury 2000
PublicationDate 2014-Oct.
2014-10-00
20141001
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-Oct.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
guruswami (ref9) 2013
ref10
ref2
cheraghchi (ref5) 2013
zyablov (ref17) 1981; 17
elias (ref6) 1957
ref8
ref7
ref4
ref3
blinovsky (ref1) 1986; 22
wozencraft (ref16) 1958; 48
guruswami (ref11) 2001
References_xml – volume: 17
  start-page: 29
  year: 1981
  ident: ref17
  article-title: List cascade decoding
  publication-title: Problems Inf Transmission
– ident: ref3
  doi: 10.1007/s11122-005-0007-5
– ident: ref2
  doi: 10.1007/978-1-4615-6193-4
– start-page: 591
  year: 2013
  ident: ref9
  article-title: Combinatorial limitations of average-radius list decoding
  publication-title: Proc 17th Int Workshop Randomization Comput
– year: 1957
  ident: ref6
  article-title: List decoding for noisy channels
  publication-title: Research Laboratory of Electronics
– volume: 22
  start-page: 7
  year: 1986
  ident: ref1
  article-title: Bounds for codes in the case of list decoding of finite volume
  publication-title: Problems Inf Transmission
– year: 2001
  ident: ref11
  article-title: Extensions to the Johnson bound
– ident: ref7
  doi: 10.1109/18.61123
– ident: ref12
  doi: 10.1109/TIT.2010.2070170
– ident: ref15
  doi: 10.1109/TIT.2010.2054750
– ident: ref4
  doi: 10.1134/S0032946008010031
– year: 2013
  ident: ref5
– volume: 48
  start-page: 95
  year: 1958
  ident: ref16
  article-title: List decoding
  publication-title: Research Laboratory of Electronics
– ident: ref8
  doi: 10.1109/TIT.2010.2095170
– ident: ref13
  doi: 10.1109/TIT.2013.2246813
– ident: ref10
  doi: 10.1109/TIT.2007.911222
– ident: ref14
  doi: 10.1007/978-3-662-04650-0
SSID ssj0014512
Score 2.3100038
Snippet We study certain combinatorial aspects of listdecoding, motivated by the exponential gap between the known upper bound (of O(1/γ)) and lower bound (of Ω p...
We study certain combinatorial aspects of listdecoding, motivated by the exponential gap between the known upper bound (of O(1/...)) and lower bound (of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5827
SubjectTerms Binary codes
Coding theory
Decoding
Electronics
Entropy
Hamming distance
Linear codes
Points
Upper bound
Weight
Title Combinatorial Limitations of Average-Radius List-Decoding
URI https://ieeexplore.ieee.org/document/6866234
https://www.proquest.com/docview/1606411981
Volume 60
WOSCitedRecordID wos000342416900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM-ON0Up1P64Itgt6VN0-ZxqENfhsiEvZVrmsJANlk7_34v6QeKIvjWkksIl_vIL5fLAVwT5PCpKXHJQJoSZky6GJmYq4nyClQiQ26LTYTzebRcyucW3Da5MFpre_lMj8ynjeWnG7UzR2VjEQny1rwN7TAUZa5WEzHgAStfBmekwIQ56pDkRI4XTwtzh4uPPJNF6fFvLsjWVPlhiK13mXX_N68jOKx2kc60XPZjaOl1D7p1hQanUtgeHHx5brAPkggICBuYTVLn2Nym8sDO2WTOlISajIv7gulql1NrXrj3BE6NczuB19nD4u7RrUonuMqTrHC5l0QcvYzLlIe-jwE5nYz-RCIw8yOFhEvTSRYo9BMVcpQeRglGKAPS8GTC_VPorDdrfQZOSJgoSwTXyk85bT4S1AqDIE19Gg0xHMC45masqmmb8hZvscUXExkT_2PD_7ji_wBumh7v5Zsaf9D2Db8buorVAxjWCxZXSpfHjMAYZ0xG7Pz3Xhewb8Yu7-INoVNsd_oS9tRHscq3V1aePgE3OsaS
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHp5vidGoffBHs1o_0I49DHRvOIVJhb-WapjCQTdbOv99Lv1AUwbeWXNpwuY_8crkcwDVBDpuaIp0MpCphZnIdfRVzVVFeF4WbIMuLTXizmT-f8-cG3Na5MFLK_PCZ7KvHPJYfr8RGbZUNXN8lb822YNthzDKKbK06ZsAcs7gb3CQVJtRRBSUNPggmgTrFxfqWyqO02DcnlFdV-WGKc_8yav1vZIdwUK4jtWEx8UfQkMs2tKoaDVqpsm3Y_3LhYAc4ERAUVkCb5E7Ls5uKLTttlWhDEmsyL_oLxotNSq1ppt8TPFXu7RheRw_B3VgviyfowuJmpjMr8hlaCeMx82wbHXI7Cb25kYuJ7QskZBobiSPQjoTHkFvoR-gjd0jHI4PZJ9BcrpbyFDSPUFESuUwKO2a0_IhQCnScOLbpa4heFwYVN0NRDlsVuHgLc4Rh8JD4Hyr-hyX_u3BT93gvbtX4g7aj-F3TlazuQq-asLBUuzQ0CY4x0-S-efZ7ryvYHQdP03A6mT2ew576T3EyrwfNbL2RF7AjPrJFur7MZesTtwrJ2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+Limitations+of+Average-Radius+List-Decoding&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Guruswami%2C+V&rft.au=Narayanan%2C+S&rft.date=2014-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=60&rft.issue=10&rft.spage=5827&rft_id=info:doi/10.1109%2FTIT.2014.2343224&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3453367871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon