Multi-Armed Bandit-Based Client Scheduling for Federated Learning

By exploiting the computing power and local data of distributed clients, federated learning (FL) features ubiquitous properties such as reduction of communication overhead and preserving data privacy. In each communication round of FL, the clients update local models based on their own data and uplo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications Jg. 19; H. 11; S. 7108 - 7123
Hauptverfasser: Xia, Wenchao, Quek, Tony Q. S., Guo, Kun, Wen, Wanli, Yang, Howard H., Zhu, Hongbo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1536-1276, 1558-2248
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract By exploiting the computing power and local data of distributed clients, federated learning (FL) features ubiquitous properties such as reduction of communication overhead and preserving data privacy. In each communication round of FL, the clients update local models based on their own data and upload their local updates via wireless channels. However, latency caused by hundreds to thousands of communication rounds remains a bottleneck in FL. To minimize the training latency, this work provides a multi-armed bandit-based framework for online client scheduling (CS) in FL without knowing wireless channel state information and statistical characteristics of clients. Firstly, we propose a CS algorithm based on the upper confidence bound policy (CS-UCB) for ideal scenarios where local datasets of clients are independent and identically distributed (i.i.d.) and balanced. An upper bound of the expected performance regret of the proposed CS-UCB algorithm is provided, which indicates that the regret grows logarithmically over communication rounds. Then, to address non-ideal scenarios with non-i.i.d. and unbalanced properties of local datasets and varying availability of clients, we further propose a CS algorithm based on the UCB policy and virtual queue technique (CS-UCB-Q). An upper bound is also derived, which shows that the expected performance regret of the proposed CS-UCB-Q algorithm can have a sub-linear growth over communication rounds under certain conditions. Besides, the convergence performance of FL training is also analyzed. Finally, simulation results validate the efficiency of the proposed algorithms.
AbstractList By exploiting the computing power and local data of distributed clients, federated learning (FL) features ubiquitous properties such as reduction of communication overhead and preserving data privacy. In each communication round of FL, the clients update local models based on their own data and upload their local updates via wireless channels. However, latency caused by hundreds to thousands of communication rounds remains a bottleneck in FL. To minimize the training latency, this work provides a multi-armed bandit-based framework for online client scheduling (CS) in FL without knowing wireless channel state information and statistical characteristics of clients. Firstly, we propose a CS algorithm based on the upper confidence bound policy (CS-UCB) for ideal scenarios where local datasets of clients are independent and identically distributed (i.i.d.) and balanced. An upper bound of the expected performance regret of the proposed CS-UCB algorithm is provided, which indicates that the regret grows logarithmically over communication rounds. Then, to address non-ideal scenarios with non-i.i.d. and unbalanced properties of local datasets and varying availability of clients, we further propose a CS algorithm based on the UCB policy and virtual queue technique (CS-UCB-Q). An upper bound is also derived, which shows that the expected performance regret of the proposed CS-UCB-Q algorithm can have a sub-linear growth over communication rounds under certain conditions. Besides, the convergence performance of FL training is also analyzed. Finally, simulation results validate the efficiency of the proposed algorithms.
Author Yang, Howard H.
Xia, Wenchao
Quek, Tony Q. S.
Zhu, Hongbo
Guo, Kun
Wen, Wanli
Author_xml – sequence: 1
  givenname: Wenchao
  orcidid: 0000-0001-6245-0347
  surname: Xia
  fullname: Xia, Wenchao
  email: wenchao_xia@sutd.edu.sg
  organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Singapore
– sequence: 2
  givenname: Tony Q. S.
  orcidid: 0000-0002-4037-3149
  surname: Quek
  fullname: Quek, Tony Q. S.
  email: tonyquek@sutd.edu.sg
  organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Singapore
– sequence: 3
  givenname: Kun
  orcidid: 0000-0003-1251-3578
  surname: Guo
  fullname: Guo, Kun
  email: kun_guo@sutd.edu.sg
  organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Singapore
– sequence: 4
  givenname: Wanli
  orcidid: 0000-0003-3810-8466
  surname: Wen
  fullname: Wen, Wanli
  email: wanli_wen@sutd.edu.sg
  organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Singapore
– sequence: 5
  givenname: Howard H.
  orcidid: 0000-0002-0256-2416
  surname: Yang
  fullname: Yang, Howard H.
  email: howard_yang@sutd.edu.sg
  organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Singapore
– sequence: 6
  givenname: Hongbo
  surname: Zhu
  fullname: Zhu, Hongbo
  email: zhuhb@njupt.edu.cn
  organization: Jiangsu Key Laboratory of Wireless Communications, Nanjing University of Posts and Telecommunications, Nanjing, China
BookMark eNp9kDFPwzAQRi1UJNrCjsQSiTnFZzuOM7YRBaQiBooYLTe-gKvUKY4z8O9J1YqBgenu7O_dSW9CRr71SMg10BkALe7W7-WMUUZnnFJFCzgjY8gylTIm1OjQc5kCy-UFmXTdllLIZZaNyfy5b6JL52GHNlkYb11MF6YbhrJx6GPyWn2i7RvnP5K6DckSLQYTh_8VmuCH50tyXpumw6tTnZK35f26fExXLw9P5XyVVqyAmAqokUMlOQCvhWVc2kxwTqVVdS5EwVSlAAqxQQqGcyXR2hwzsVF8U4EFPiW3x7370H712EW9bfvgh5OaCUkhU7KQQ0oeU1Vouy5grSsXTXStj8G4RgPVB1160KUPuvRJ1wDSP-A-uJ0J3_8hN0fEIeJvvADBBAX-A8bWdNk
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_JIOT_2023_3327495
crossref_primary_10_1109_JSAC_2021_3118353
crossref_primary_10_1016_j_knosys_2023_110658
crossref_primary_10_1016_j_inffus_2023_102198
crossref_primary_10_1109_JSAC_2022_3229436
crossref_primary_10_1109_JSYST_2022_3206404
crossref_primary_10_1109_TCE_2023_3325128
crossref_primary_10_1109_TII_2021_3137349
crossref_primary_10_1109_TVT_2021_3055767
crossref_primary_10_1109_TVT_2024_3449092
crossref_primary_10_1109_TPDS_2023_3334398
crossref_primary_10_1109_TVT_2022_3207916
crossref_primary_10_1145_3706059
crossref_primary_10_3390_ijgi11030203
crossref_primary_10_1109_JIOT_2022_3153996
crossref_primary_10_1109_TWC_2023_3249252
crossref_primary_10_1109_TII_2022_3170900
crossref_primary_10_1109_JIOT_2023_3264677
crossref_primary_10_1109_JSAC_2021_3118346
crossref_primary_10_1007_s42979_024_03137_0
crossref_primary_10_1109_JIOT_2022_3224239
crossref_primary_10_1109_TMC_2023_3289940
crossref_primary_10_1109_TSP_2022_3168490
crossref_primary_10_1109_TVT_2022_3196411
crossref_primary_10_1109_TNSE_2025_3568030
crossref_primary_10_1109_TWC_2023_3303492
crossref_primary_10_1109_TWC_2023_3330010
crossref_primary_10_1109_JIOT_2022_3176739
crossref_primary_10_1109_TCSS_2023_3259431
crossref_primary_10_1109_TVT_2023_3264202
crossref_primary_10_1109_JIOT_2022_3164914
crossref_primary_10_1002_widm_1514
crossref_primary_10_1109_TVT_2024_3360959
crossref_primary_10_1109_TMC_2021_3075291
crossref_primary_10_1016_j_comnet_2024_110512
crossref_primary_10_1109_TC_2023_3333213
crossref_primary_10_1109_TVT_2024_3466556
crossref_primary_10_3390_s23167235
crossref_primary_10_1109_JIOT_2022_3183295
crossref_primary_10_1109_JIOT_2022_3142185
crossref_primary_10_1109_TVT_2021_3135541
crossref_primary_10_3390_app14020494
crossref_primary_10_1145_3501296
crossref_primary_10_1109_TMC_2021_3074816
crossref_primary_10_1109_JIOT_2024_3502403
crossref_primary_10_1109_TWC_2022_3166941
crossref_primary_10_1109_TWC_2022_3211998
crossref_primary_10_3390_electronics13163154
crossref_primary_10_1109_JIOT_2024_3425757
crossref_primary_10_1109_JIOT_2024_3354914
crossref_primary_10_1109_TWC_2023_3342095
crossref_primary_10_1186_s12911_024_02798_4
crossref_primary_10_1109_TWC_2022_3213411
crossref_primary_10_1016_j_iot_2025_101687
crossref_primary_10_1109_JIOT_2023_3344457
crossref_primary_10_1109_TSP_2022_3210365
crossref_primary_10_1109_TAES_2023_3300813
crossref_primary_10_1109_TWC_2022_3232891
crossref_primary_10_1109_ACCESS_2025_3543441
crossref_primary_10_3390_electronics14122331
crossref_primary_10_1016_j_comnet_2024_110663
crossref_primary_10_1109_JIOT_2024_3417212
crossref_primary_10_1109_JIOT_2025_3557906
crossref_primary_10_1109_LWC_2021_3069541
crossref_primary_10_1109_TMC_2023_3323645
crossref_primary_10_1109_ACCESS_2025_3553419
crossref_primary_10_1049_cmu2_12121
crossref_primary_10_1109_JIOT_2022_3143531
crossref_primary_10_1007_s10586_024_04900_x
crossref_primary_10_1109_JIOT_2022_3172113
crossref_primary_10_3390_s22072590
crossref_primary_10_1007_s11704_024_40065_x
crossref_primary_10_1109_TMC_2023_3237374
crossref_primary_10_1007_s10586_025_05388_9
crossref_primary_10_1109_MSP_2021_3125282
crossref_primary_10_1109_TCCN_2023_3271108
crossref_primary_10_1002_int_22777
crossref_primary_10_1109_JIOT_2021_3127886
crossref_primary_10_1109_TWC_2022_3144140
crossref_primary_10_1109_JIOT_2023_3262620
crossref_primary_10_1186_s13634_024_01192_6
crossref_primary_10_3390_jmse12091656
crossref_primary_10_1109_JSAC_2021_3118430
crossref_primary_10_1109_TITS_2024_3376792
crossref_primary_10_3390_fi17080375
crossref_primary_10_1007_s11432_023_3918_9
crossref_primary_10_1109_TMC_2024_3383038
crossref_primary_10_3390_drones7010030
crossref_primary_10_1109_JIOT_2023_3298366
crossref_primary_10_1049_cmu2_12551
crossref_primary_10_1109_TMC_2022_3194357
crossref_primary_10_1109_JSTSP_2022_3224590
crossref_primary_10_1109_TPDS_2022_3186960
crossref_primary_10_1109_TMC_2023_3276158
crossref_primary_10_1109_TVT_2025_3553906
crossref_primary_10_1109_MWC_001_2000252
crossref_primary_10_1007_s12083_024_01886_6
crossref_primary_10_1109_JIOT_2023_3299573
crossref_primary_10_1109_ACCESS_2024_3413069
crossref_primary_10_1016_j_inffus_2024_102549
crossref_primary_10_1109_TMC_2023_3265010
crossref_primary_10_1155_2023_9390660
crossref_primary_10_1109_TCOMM_2022_3147241
crossref_primary_10_1109_TMC_2022_3197459
crossref_primary_10_1109_TWC_2023_3339824
crossref_primary_10_3390_app132413114
crossref_primary_10_1109_TVT_2021_3136308
crossref_primary_10_1109_JIOT_2023_3273619
crossref_primary_10_1145_3721480
crossref_primary_10_1016_j_pmcj_2025_102063
crossref_primary_10_1109_TMC_2022_3190260
crossref_primary_10_1145_3673237
crossref_primary_10_1109_TWC_2023_3239400
crossref_primary_10_1109_JSTSP_2021_3126174
crossref_primary_10_1109_TVT_2022_3205307
crossref_primary_10_1109_JSAC_2021_3126052
crossref_primary_10_1016_j_jpdc_2025_105168
crossref_primary_10_1109_TCOMM_2024_3412763
crossref_primary_10_1109_JSAC_2021_3118435
crossref_primary_10_1109_TITS_2024_3374872
crossref_primary_10_1109_TVT_2023_3277438
crossref_primary_10_1109_TWC_2022_3167263
crossref_primary_10_1109_TWC_2022_3206769
crossref_primary_10_1109_LCOMM_2022_3194558
crossref_primary_10_1109_TMC_2023_3337016
crossref_primary_10_1109_TIT_2022_3209931
crossref_primary_10_1109_TSC_2024_3466852
crossref_primary_10_1109_JIOT_2024_3440959
crossref_primary_10_1109_TMC_2022_3178167
crossref_primary_10_1109_TMC_2025_3529487
crossref_primary_10_1109_JIOT_2022_3151193
crossref_primary_10_1287_ijoc_2022_0057
crossref_primary_10_1109_LCOMM_2022_3181678
crossref_primary_10_1109_MNET_103_2100587
crossref_primary_10_3390_s25103028
crossref_primary_10_1109_TWC_2023_3341400
crossref_primary_10_1109_TCOMM_2023_3311451
crossref_primary_10_1109_TNET_2024_3423673
crossref_primary_10_1109_JPROC_2024_3409428
crossref_primary_10_1109_TVT_2024_3507358
crossref_primary_10_1007_s11276_023_03304_w
crossref_primary_10_1109_TAC_2024_3525417
crossref_primary_10_1049_cmu2_12441
crossref_primary_10_1109_TCOMM_2022_3153068
crossref_primary_10_1007_s00607_024_01317_7
crossref_primary_10_1007_s11280_021_00989_x
crossref_primary_10_1109_TII_2022_3194840
crossref_primary_10_1109_JIOT_2023_3257402
crossref_primary_10_1109_TVT_2024_3379742
crossref_primary_10_1109_TVT_2023_3319160
crossref_primary_10_3390_jmse13010032
crossref_primary_10_1109_TPDS_2022_3218807
crossref_primary_10_1109_JSAC_2023_3345393
crossref_primary_10_1109_TMC_2024_3453250
crossref_primary_10_1109_TPDS_2021_3134647
crossref_primary_10_1109_JIOT_2024_3431555
crossref_primary_10_1109_LWC_2022_3141792
Cites_doi 10.1561/2200000024
10.1109/ALLERTON.2009.5394517
10.1109/ICASSP40776.2020.9053740
10.1109/TNET.2011.2181864
10.1109/ICASSP40776.2020.9054634
10.1080/10556788.2016.1278445
10.1109/TWC.2019.2961673
10.2307/3214163
10.1109/JSAC.2019.2904348
10.1023/A:1013689704352
10.1109/TWC.2019.2946245
10.1109/TSP.2020.2981904
10.1109/TCOMM.2019.2944169
10.1016/0196-8858(85)90002-8
10.1109/ICC.2019.8761315
10.1109/ITA.2018.8503124
10.1109/INFOCOM.2019.8737461
10.1109/TSP.2020.2983166
10.2200/S00271ED1V01Y201006CNT007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2020.3008091
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 7123
ExternalDocumentID 10_1109_TWC_2020_3008091
9142401
Genre orig-research
GrantInformation_xml – fundername: SUTD-ZJU Seed
  grantid: 201909
– fundername: Singapore University of Technology and Design (SUTD) Growth Plan Grant for AI
  funderid: 10.13039/501100007040
– fundername: National Natural Science Foundation of China
  grantid: 61871446
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-41fe31c63113f4d236d543306d8f744928c81194be01a3386edd7e54b83bc1d13
IEDL.DBID RIE
ISICitedReferencesCount 228
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589218700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 12:28:50 EDT 2025
Sat Nov 29 06:23:50 EST 2025
Tue Nov 18 21:32:40 EST 2025
Wed Aug 27 02:29:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-41fe31c63113f4d236d543306d8f744928c81194be01a3386edd7e54b83bc1d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4037-3149
0000-0002-0256-2416
0000-0001-6245-0347
0000-0003-3810-8466
0000-0003-1251-3578
PQID 2460158696
PQPubID 105736
PageCount 16
ParticipantIDs proquest_journals_2460158696
crossref_citationtrail_10_1109_TWC_2020_3008091
ieee_primary_9142401
crossref_primary_10_1109_TWC_2020_3008091
PublicationCentury 2000
PublicationDate 2020-Nov.
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
chen (ref15) 2018
chen (ref29) 2020
ref36
ref14
haddadpour (ref23) 2019
gupta (ref33) 2019
ref31
ref30
ref32
ref10
stich (ref28) 2018
lin (ref6) 2018
ref38
dinh (ref21) 2019
xie (ref34) 2019; 97
fikri aji (ref4) 2017
brendan mcmahan (ref1) 2016
li (ref24) 2020
zeng (ref17) 2019
chen (ref37) 2020
pollard (ref39) 2012
chen (ref16) 2019
bonawitz (ref2) 2019
ref26
kamp (ref11) 2018
ref25
ref20
ren (ref18) 2019
ref22
ref27
ref8
ref7
chen (ref12) 2016
ref9
ref3
ref5
shi (ref19) 2019
References_xml – year: 2019
  ident: ref19
  article-title: Device scheduling with fast convergence for wireless federated learning
  publication-title: arXiv 1911 00856
– ident: ref31
  doi: 10.1561/2200000024
– ident: ref25
  doi: 10.1109/ALLERTON.2009.5394517
– ident: ref14
  doi: 10.1109/ICASSP40776.2020.9053740
– ident: ref32
  doi: 10.1109/TNET.2011.2181864
– ident: ref5
  doi: 10.1109/ICASSP40776.2020.9054634
– ident: ref20
  doi: 10.1080/10556788.2016.1278445
– start-page: 1
  year: 2020
  ident: ref37
  article-title: Efficient and robust asynchronous federated learning with stragglers
  publication-title: Proc Int Conf Learn Represent (ICLR)
– start-page: 1
  year: 2018
  ident: ref6
  article-title: Deep gradient compression: Reducing the communication bandwidth for distributed training
  publication-title: Proc Int Conf Learn Represent (ICLR)
– year: 2016
  ident: ref1
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: arXiv 1602 05629
– start-page: 5050
  year: 2018
  ident: ref15
  article-title: LAG: Lazily aggregated gradient for communication-efficient distributed learning
  publication-title: Proc Adv NIPS
– year: 2019
  ident: ref21
  article-title: Federated learning over wireless networks: Convergence analysis and resource allocation
  publication-title: arXiv 1910 13067
– year: 2019
  ident: ref33
  article-title: Multi-armed bandits with correlated arms
  publication-title: arXiv 1911 03959
– ident: ref7
  doi: 10.1109/TWC.2019.2961673
– ident: ref26
  doi: 10.2307/3214163
– year: 2012
  ident: ref39
  publication-title: Convergence of Stochastic Processes
– ident: ref10
  doi: 10.1109/JSAC.2019.2904348
– start-page: 393
  year: 2018
  ident: ref11
  article-title: Efficient decentralized deep learning by dynamic model averaging
  publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases
– year: 2019
  ident: ref23
  article-title: On the convergence of local descent methods in federated learning
  publication-title: arXiv 1910 14425
– ident: ref22
  doi: 10.1023/A:1013689704352
– ident: ref8
  doi: 10.1109/TWC.2019.2946245
– year: 2018
  ident: ref28
  article-title: Local SGD converges fast and communicates little
  publication-title: arXiv 1805 09767
– volume: 97
  start-page: 6893
  year: 2019
  ident: ref34
  article-title: Zeno: Distributed stochastic gradient descent with suspicion-based fault-tolerance
  publication-title: Proc Int Conf Mach Learn
– ident: ref9
  doi: 10.1109/TSP.2020.2981904
– ident: ref38
  doi: 10.1109/TCOMM.2019.2944169
– year: 2017
  ident: ref4
  article-title: Sparse communication for distributed gradient descent
  publication-title: arXiv 1704 05021
– ident: ref30
  doi: 10.1016/0196-8858(85)90002-8
– year: 2019
  ident: ref18
  article-title: Accelerating DNN training in wireless federated edge learning system
  publication-title: arXiv 1905 09712
– year: 2016
  ident: ref12
  article-title: Revisiting distributed synchronous SGD
  publication-title: arXiv 1604 00981
– ident: ref13
  doi: 10.1109/ICC.2019.8761315
– year: 2019
  ident: ref17
  article-title: Energy-efficient radio resource allocation for federated edge learning
  publication-title: arXiv 1907 06040
– ident: ref36
  doi: 10.1109/ITA.2018.8503124
– start-page: 1
  year: 2020
  ident: ref24
  article-title: On the convergence of FedAvg on non-IID data
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref27
  doi: 10.1109/INFOCOM.2019.8737461
– year: 2019
  ident: ref16
  article-title: A joint learning and communications framework for federated learning over wireless networks
  publication-title: arXiv 1909 07972
– ident: ref3
  doi: 10.1109/TSP.2020.2983166
– ident: ref35
  doi: 10.2200/S00271ED1V01Y201006CNT007
– year: 2019
  ident: ref2
  article-title: Towards federated learning at scale: System design
  publication-title: arXiv 1902 01046
– year: 2020
  ident: ref29
  article-title: Convergence time optimization for federated learning over wireless networks
  publication-title: arXiv 2001 07845
SSID ssj0017655
Score 2.699786
Snippet By exploiting the computing power and local data of distributed clients, federated learning (FL) features ubiquitous properties such as reduction of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7108
SubjectTerms Algorithms
client scheduling
client selection
Clients
Communication
Computational modeling
Confidence
Convergence
Data models
Datasets
Federated learning
multi-armed bandit (MAB)
Multi-armed bandit problems
Scheduling
Smart phones
Training
Upper bound
Upper bounds
Wireless communication
Title Multi-Armed Bandit-Based Client Scheduling for Federated Learning
URI https://ieeexplore.ieee.org/document/9142401
https://www.proquest.com/docview/2460158696
Volume 19
WOSCitedRecordID wos000589218700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA21uNCFrypWq2ThRjB28pg8lrVYXEgRrNjdMHlMEUorffj9JpnpoCiCu1kkw3DuZO65k5x7ALiyNjVUM4xcKjRiNM-RpmmBpCpyRxU1Mo-uJY9iOJTjsXpqgJtaC-Oci4fP3G24jHv5dm7W4VdZVwVZVhBrbQnBS61WvWMgeHQ49Qs4-MqIeksyUd3Ra98XgsTXp4EfKfwtBUVPlR8f4phdBvv_e64DsFexSNgrw34IGm52BHa_9BZsgV6U1iIfSGfhXRCvrNCdT1kW9qdBAwmffbhsOIc-gZ64wkHoKuGJp4VVy9XJMXgZ3I_6D6jyS0CGKLxCDBeOYsMpxrRgllBuU0Z9TWBlIRhTRBqJsWLaJTj3pSl31gqXMi2pNthiegKas_nMnQLITO6Zg7TaJ3RGCiUdN0TzxHLq6TgxbdDdQJiZqpl48LSYZrGoSFTmQc8C6FkFehtc1zPey0Yaf4xtBZDrcRW-bdDZRCmrVtoyI8yXlKnkip_9Pusc7IR7l_rBDmiuFmt3AbbNx-ptubiML9EnnM_Btg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL2MKagPfk1xOrUPvgjGNR9Nk8dtOCbOIThxb6VN0iGMTXT6-03SWhRF8K0PCS3nNr3nNjn3AJxpHSmaMYxMFGeI0TRFGY1yJGSeGiqpEql3LRnGo5GYTORdDS4qLYwxxh8-M5fu0u_l64V6c7_K2tLJspxYayVijISFWqvaM4i59zi1S9g5y8TVpmQo2-PHni0Fia1QHUOS-FsS8q4qPz7FPr_0t_73ZNuwWfLIoFMEfgdqZr4LG1-6Czag48W1yIbS6KDr5CtL1LVJSwe9mVNBBvc2YNqdRJ8GlroGfddXwlJPHZRNV6d78NC_GvcGqHRMQIpIvEQM54ZixSnGNGeaUK4jRm1VoEUeMyaJUAJjyTIT4tQWp9xoHZuIZYJmCmtM96E-X8zNAQRMpZY7CJ3ZlM5ILoXhimQ81JxaQk5UE9qfECaqbCfuXC1miS8rQplY0BMHelKC3oTzasZz0Urjj7ENB3I1rsS3Ca3PKCXlWntNCLNFZSS45Ie_zzqFtcH4dpgMr0c3R7Du7lOoCVtQX768mWNYVe_Lp9eXE_9CfQDglMT9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Armed+Bandit-Based+Client+Scheduling+for+Federated+Learning&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Xia%2C+Wenchao&rft.au=Quek%2C+Tony+Q+S&rft.au=Guo%2C+Kun&rft.au=Wen%2C+Wanli&rft.date=2020-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=19&rft.issue=11&rft.spage=7108&rft_id=info:doi/10.1109%2FTWC.2020.3008091&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon