Counting the dimension of splines of mixed smoothness A general recipe, and its application to planar meshes of arbitrary topologies

In this paper, we study the dimension of bivariate polynomial splines of mixed smoothness on polygonal meshes. Here, “mixed smoothness” refers to the choice of different orders of smoothness across different edges of the mesh. To study the dimension of spaces of such splines, we use tools from homol...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in computational mathematics Ročník 47; číslo 1
Hlavní autori: Toshniwal, Deepesh, DiPasquale, Michael
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2021
Predmet:
ISSN:1019-7168, 1572-9044
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we study the dimension of bivariate polynomial splines of mixed smoothness on polygonal meshes. Here, “mixed smoothness” refers to the choice of different orders of smoothness across different edges of the mesh. To study the dimension of spaces of such splines, we use tools from homological algebra. These tools were first applied to the study of splines by Billera (Trans. Am. Math. Soc. 310 (1), 325–340, 1988 ). Using them, estimation of the spline space dimension amounts to the study of the Billera-Schenck-Stillman complex for the spline space. In particular, when the homology in positions 1 and 0 of this complex is trivial, the dimension of the spline space can be computed combinatorially. We call such spline spaces “lower-acyclic.” In this paper, starting from a spline space which is lower-acyclic, we present sufficient conditions that ensure that the same will be true for the spline space obtained after relaxing the smoothness requirements across a subset of the mesh edges. This general recipe is applied in a specific setting: meshes of arbitrary topologies. We show how our results can be used to compute the dimensions of spline spaces on triangulations, polygonal meshes, and T-meshes with holes.
AbstractList In this paper, we study the dimension of bivariate polynomial splines of mixed smoothness on polygonal meshes. Here, “mixed smoothness” refers to the choice of different orders of smoothness across different edges of the mesh. To study the dimension of spaces of such splines, we use tools from homological algebra. These tools were first applied to the study of splines by Billera (Trans. Am. Math. Soc. 310 (1), 325–340, 1988 ). Using them, estimation of the spline space dimension amounts to the study of the Billera-Schenck-Stillman complex for the spline space. In particular, when the homology in positions 1 and 0 of this complex is trivial, the dimension of the spline space can be computed combinatorially. We call such spline spaces “lower-acyclic.” In this paper, starting from a spline space which is lower-acyclic, we present sufficient conditions that ensure that the same will be true for the spline space obtained after relaxing the smoothness requirements across a subset of the mesh edges. This general recipe is applied in a specific setting: meshes of arbitrary topologies. We show how our results can be used to compute the dimensions of spline spaces on triangulations, polygonal meshes, and T-meshes with holes.
In this paper, we study the dimension of bivariate polynomial splines of mixed smoothness on polygonal meshes. Here, “mixed smoothness” refers to the choice of different orders of smoothness across different edges of the mesh. To study the dimension of spaces of such splines, we use tools from homological algebra. These tools were first applied to the study of splines by Billera (Trans. Am. Math. Soc. 310 (1), 325–340, 1988). Using them, estimation of the spline space dimension amounts to the study of the Billera-Schenck-Stillman complex for the spline space. In particular, when the homology in positions 1 and 0 of this complex is trivial, the dimension of the spline space can be computed combinatorially. We call such spline spaces “lower-acyclic.” In this paper, starting from a spline space which is lower-acyclic, we present sufficient conditions that ensure that the same will be true for the spline space obtained after relaxing the smoothness requirements across a subset of the mesh edges. This general recipe is applied in a specific setting: meshes of arbitrary topologies. We show how our results can be used to compute the dimensions of spline spaces on triangulations, polygonal meshes, and T-meshes with holes.
ArticleNumber 6
Author Toshniwal, Deepesh
DiPasquale, Michael
Author_xml – sequence: 1
  givenname: Deepesh
  orcidid: 0000-0002-7142-7904
  surname: Toshniwal
  fullname: Toshniwal, Deepesh
  email: d.toshniwal@tudelft.nl
  organization: Delft Institute of Applied Mathematics, Delft University of Technology
– sequence: 2
  givenname: Michael
  surname: DiPasquale
  fullname: DiPasquale, Michael
  organization: Department of Mathematics, Colorado State University
BookMark eNp9j8tqwzAQRUVJoUnaH-jKP6B2RrIsaVlCXxDopl0L2ZYThVgKlgPu31dpuuoiq7nM5cxwFmQWYnCE3CM8IIB8TAhlWVJgQEErDnS6InMUklGdi1nOgJpKrNQNWaS0AwBdSTEnYhWPYfRhU4xbV7S-dyH5GIrYFemw98GlU-z95Noi9TGO27xKt-S6s_vk7v7mkny9PH-u3uj64_V99bSmDdM40hKqxgoHQmvkoLiqECshG2Vr6WrV8hZqXZVKdhw77YSsZdNZVjYVAhPI-JKw891miCkNrjOHwfd2-DYI5iRuzuImi5tfcTNlSP2DGj_aMVuNg_X7yyg_oyn_CRs3mF08DiErXqJ-AL8DbyQ
CitedBy_id crossref_primary_10_1016_j_aam_2022_102412
crossref_primary_10_1155_2021_7965297
Cites_doi 10.1090/S0025-5718-2013-02738-X
10.1007/s10444-016-9461-4
10.1007/BF01890563
10.1016/j.aam.2008.06.001
10.1007/BF02907546
10.1006/aama.1997.0533
10.1016/j.cma.2017.06.008
10.1016/j.jsc.2012.10.002
10.1007/978-3-0348-5685-0_11
10.1216/RMJ-1984-14-1-251
10.1007/s00365-017-9367-5
10.1016/j.cma.2004.10.008
10.1016/S0022-4049(97)00026-1
10.1007/s10444-020-09829-4
10.1090/S0002-9947-1988-0965757-9
10.1007/BF01386434
10.1006/jabr.1997.7361
10.1017/CBO9780511756320
10.1016/j.cagd.2019.07.002
10.1016/j.amc.2015.08.019
10.1007/BFb0069132
10.1016/j.cagd.2020.101880
10.1137/1.9781611970173
10.1090/mcom/3224
10.1002/9780470749081
10.1007/BF01888166
10.1090/S0002-9904-1973-13351-8
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10444-020-09830-x
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_020_09830_x
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c291t-406ca5e0599130838611657c8ab7eb8d3d0b96487f31f9e57b7cfa24c61025123
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608397300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1019-7168
IngestDate Tue Nov 18 21:55:28 EST 2025
Sat Nov 29 04:13:21 EST 2025
Fri Feb 21 02:48:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Spline dimension formulas
41A15
Splines
Mixed smoothness
Polygonal meshes with holes
13D02
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-406ca5e0599130838611657c8ab7eb8d3d0b96487f31f9e57b7cfa24c61025123
ORCID 0000-0002-7142-7904
OpenAccessLink https://link.springer.com/10.1007/s10444-020-09830-x
ParticipantIDs crossref_primary_10_1007_s10444_020_09830_x
crossref_citationtrail_10_1007_s10444_020_09830_x
springer_journals_10_1007_s10444_020_09830_x
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2021
Publisher Springer US
Publisher_xml – name: Springer US
References ToshniwalDSpeleersHHughesTJRSmooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerationsComput. Methods Appl. Mech. Eng.2017327411458372577710.1016/j.cma.2017.06.008
AlfeldPSchumakerLLOn the dimension of bivariate spline spaces of smoothness r and degree d = 3r + 1Numer. Math.1990571651661106237210.1007/BF01386434
Chui, C.K.: Multivariate Splines, vol. 54. Siam (1988)
MourrainBOn the dimension of spline spaces on planar T-meshesMath. Comput.201483286847871314369510.1090/S0025-5718-2013-02738-X
ToshniwalDVillamizarNDimension of polynomial splines of mixed smoothness on T-meshesComput. Aided Geom. Des.202080101880410195910.1016/j.cagd.2020.101880
GeramitaASchenckHKFat points, inverse systems, and piecewise polynomial functionsJ. Algebra19982041116128162394910.1006/jabr.1997.7361
SchenckHStillmanMLocal cohomology of bivariate splinesJ. Pure Appl. Algebra1997117535548145785410.1016/S0022-4049(97)00026-1
ZengCWuMDengFDengJDimensions of spline spaces over non-rectangular T-meshesAdv. Comput. Math.201642612591286357120510.1007/s10444-016-9461-4
DiPasqualeMDimension of mixed splines on polytopal cellsMath. Comput.201887310905939373922310.1090/mcom/3224
CottrellJAHughesTJRBazilevsYIsogeometric Analysis: Toward Integration of CAD and FEA2009HobokenWiley10.1002/9780470749081
BraccoCLycheTManniCRomanFSpeleersHGeneralized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splinesAppl. Math. Comput.201627218719834181231410.65027
SchenckHStillmanMA family of ideals of minimal regularity and the hilbert series of Cr(Δ)Adv. Appl. Math.1997192169182145949610.1006/aama.1997.0533
IbrahimAKSchumakerLLSuper spline spaces of smoothness r and degree d ≥ 3r + 2Constr. Approx.199173401423112041210.1007/BF01888166
SchenckHComputational Algebraic Geometry, vol. 582003CambridgeCambridge University Press10.1017/CBO9780511756320
McDonaldTSchenckHPiecewise polynomials on polyhedral complexesAdv. Appl. Math.20094218293247531510.1016/j.aam.2008.06.001
BilleraLJHomology of smooth splines: Generic triangulations and a conjecture of strangTrans. Am. Math. Soc.1988310132534096575710.1090/S0002-9947-1988-0965757-9
SchumakerLLBounds on the dimension of spaces of multivariate piecewise polynomialsRocky Mt. J. Math.198414125126473617710.1216/RMJ-1984-14-1-251
HughesTJRCottrellJABazilevsYIsogeometric Analysis: CAD, finite elements, NURBS, exact geometry and mesh refinementComput. Methods Appl. Mech. Eng.200519441354195215238210.1016/j.cma.2004.10.008
AlfeldPSchumakerLLThe dimension of bivariate spline spaces of smoothness r for degree d ≥ 4r + 1Constr. Approx.19873118919788955410.1007/BF01890563
HongDSpaces of bivariate spline functions over triangulationJ. Approx. Theory199171567511173080756.41017
Toshniwal, D., Mourrain, B., Hughes, T.J.R.: Advances in Computational Mathematics (accepted). arXiv:https://doi.org/1903.05949 [math] https://doi.org/10.1007/s10444-020-09829-4 (2019)
Alfeld, P., Piper, B., Schumaker, L.L.: Spaces of bivariate splines on triangulations with holes. In: Proceedings of China-U.S. Joint Conference on Approximation Theory (Hangzhou, 1985), vol. 3, pp. 1–10 (1987)
FarinGEHoschekJKimM-SHandbook of Computer Aided Geometric Design2002AmsterdamElsevier1003.68179
HatcherAAlgebraic Topology2002CambridgeCambridge University Press1044.55001
StrangGPiecewise polynomials and the finite element methodBull. Am. Math. Soc.19737961128113732706010.1090/S0002-9904-1973-13351-8
Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at https://faculty.math.illinois.edu/Macaulay2
Strang, G.: The dimension of piecewise polynomial spaces, and one-sided approximation. In: Conference on the Numerical Solution of Differential Equations, pp 144–152. Springer (1974)
ToshniwalDHughesTJRPolynomial splines of non-uniform degree on triangulations: Combinatorial bounds on the dimensionComput. Aided Geom. Des.201975101763401609910.1016/j.cagd.2019.07.002
SchenckHSorokinaTSubdivision and spline spacesConstr. Approx.2018472237247376927710.1007/s00365-017-9367-5
Jia, R.Q.: Lower bounds on the dimension of spaces of bivariate splines. In: Multivariate Approximation and Interpolation (Duisburg, 1989), vol. 94 of International Series of Numerical Mathematics, pp. 155–165. Birkhäuser, Basel (1990)
MourrainBVillamizarNHomological techniques for the analysis of the dimension of triangular spline spacesJ. Symb. Comput.201350564577299689610.1016/j.jsc.2012.10.002
M DiPasquale (9830_CR11) 2018; 87
D Toshniwal (9830_CR19) 2017; 327
GE Farin (9830_CR1) 2002
B Mourrain (9830_CR29) 2013; 50
9830_CR22
H Schenck (9830_CR8) 1997; 117
T McDonald (9830_CR10) 2009; 42
B Mourrain (9830_CR13) 2014; 83
9830_CR21
9830_CR20
JA Cottrell (9830_CR2) 2009
LL Schumaker (9830_CR5) 1984; 14
LJ Billera (9830_CR7) 1988; 310
P Alfeld (9830_CR6) 1987; 3
H Schenck (9830_CR9) 1997; 19
H Schenck (9830_CR25) 2003
G Strang (9830_CR3) 1973; 79
9830_CR14
C Zeng (9830_CR16) 2016; 42
P Alfeld (9830_CR24) 1990; 57
TJR Hughes (9830_CR31) 2005; 194
A Geramita (9830_CR28) 1998; 204
AK Ibrahim (9830_CR27) 1991; 7
H Schenck (9830_CR17) 2018; 47
A Hatcher (9830_CR23) 2002
9830_CR30
D Hong (9830_CR26) 1991; 7
9830_CR4
D Toshniwal (9830_CR18) 2020; 80
C Bracco (9830_CR15) 2016; 272
D Toshniwal (9830_CR12) 2019; 75
References_xml – reference: BilleraLJHomology of smooth splines: Generic triangulations and a conjecture of strangTrans. Am. Math. Soc.1988310132534096575710.1090/S0002-9947-1988-0965757-9
– reference: Strang, G.: The dimension of piecewise polynomial spaces, and one-sided approximation. In: Conference on the Numerical Solution of Differential Equations, pp 144–152. Springer (1974)
– reference: SchenckHStillmanMA family of ideals of minimal regularity and the hilbert series of Cr(Δ)Adv. Appl. Math.1997192169182145949610.1006/aama.1997.0533
– reference: ToshniwalDHughesTJRPolynomial splines of non-uniform degree on triangulations: Combinatorial bounds on the dimensionComput. Aided Geom. Des.201975101763401609910.1016/j.cagd.2019.07.002
– reference: Chui, C.K.: Multivariate Splines, vol. 54. Siam (1988)
– reference: FarinGEHoschekJKimM-SHandbook of Computer Aided Geometric Design2002AmsterdamElsevier1003.68179
– reference: HongDSpaces of bivariate spline functions over triangulationJ. Approx. Theory199171567511173080756.41017
– reference: SchenckHSorokinaTSubdivision and spline spacesConstr. Approx.2018472237247376927710.1007/s00365-017-9367-5
– reference: Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at https://faculty.math.illinois.edu/Macaulay2/
– reference: StrangGPiecewise polynomials and the finite element methodBull. Am. Math. Soc.19737961128113732706010.1090/S0002-9904-1973-13351-8
– reference: SchenckHComputational Algebraic Geometry, vol. 582003CambridgeCambridge University Press10.1017/CBO9780511756320
– reference: Jia, R.Q.: Lower bounds on the dimension of spaces of bivariate splines. In: Multivariate Approximation and Interpolation (Duisburg, 1989), vol. 94 of International Series of Numerical Mathematics, pp. 155–165. Birkhäuser, Basel (1990)
– reference: Toshniwal, D., Mourrain, B., Hughes, T.J.R.: Advances in Computational Mathematics (accepted). arXiv:https://doi.org/1903.05949 [math] https://doi.org/10.1007/s10444-020-09829-4 (2019)
– reference: CottrellJAHughesTJRBazilevsYIsogeometric Analysis: Toward Integration of CAD and FEA2009HobokenWiley10.1002/9780470749081
– reference: SchenckHStillmanMLocal cohomology of bivariate splinesJ. Pure Appl. Algebra1997117535548145785410.1016/S0022-4049(97)00026-1
– reference: IbrahimAKSchumakerLLSuper spline spaces of smoothness r and degree d ≥ 3r + 2Constr. Approx.199173401423112041210.1007/BF01888166
– reference: MourrainBVillamizarNHomological techniques for the analysis of the dimension of triangular spline spacesJ. Symb. Comput.201350564577299689610.1016/j.jsc.2012.10.002
– reference: BraccoCLycheTManniCRomanFSpeleersHGeneralized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splinesAppl. Math. Comput.201627218719834181231410.65027
– reference: SchumakerLLBounds on the dimension of spaces of multivariate piecewise polynomialsRocky Mt. J. Math.198414125126473617710.1216/RMJ-1984-14-1-251
– reference: HatcherAAlgebraic Topology2002CambridgeCambridge University Press1044.55001
– reference: ToshniwalDSpeleersHHughesTJRSmooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerationsComput. Methods Appl. Mech. Eng.2017327411458372577710.1016/j.cma.2017.06.008
– reference: Alfeld, P., Piper, B., Schumaker, L.L.: Spaces of bivariate splines on triangulations with holes. In: Proceedings of China-U.S. Joint Conference on Approximation Theory (Hangzhou, 1985), vol. 3, pp. 1–10 (1987)
– reference: AlfeldPSchumakerLLOn the dimension of bivariate spline spaces of smoothness r and degree d = 3r + 1Numer. Math.1990571651661106237210.1007/BF01386434
– reference: HughesTJRCottrellJABazilevsYIsogeometric Analysis: CAD, finite elements, NURBS, exact geometry and mesh refinementComput. Methods Appl. Mech. Eng.200519441354195215238210.1016/j.cma.2004.10.008
– reference: DiPasqualeMDimension of mixed splines on polytopal cellsMath. Comput.201887310905939373922310.1090/mcom/3224
– reference: GeramitaASchenckHKFat points, inverse systems, and piecewise polynomial functionsJ. Algebra19982041116128162394910.1006/jabr.1997.7361
– reference: McDonaldTSchenckHPiecewise polynomials on polyhedral complexesAdv. Appl. Math.20094218293247531510.1016/j.aam.2008.06.001
– reference: ZengCWuMDengFDengJDimensions of spline spaces over non-rectangular T-meshesAdv. Comput. Math.201642612591286357120510.1007/s10444-016-9461-4
– reference: ToshniwalDVillamizarNDimension of polynomial splines of mixed smoothness on T-meshesComput. Aided Geom. Des.202080101880410195910.1016/j.cagd.2020.101880
– reference: AlfeldPSchumakerLLThe dimension of bivariate spline spaces of smoothness r for degree d ≥ 4r + 1Constr. Approx.19873118919788955410.1007/BF01890563
– reference: MourrainBOn the dimension of spline spaces on planar T-meshesMath. Comput.201483286847871314369510.1090/S0025-5718-2013-02738-X
– ident: 9830_CR20
– volume-title: Algebraic Topology
  year: 2002
  ident: 9830_CR23
– volume: 83
  start-page: 847
  issue: 286
  year: 2014
  ident: 9830_CR13
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2013-02738-X
– volume: 42
  start-page: 1259
  issue: 6
  year: 2016
  ident: 9830_CR16
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-016-9461-4
– volume: 3
  start-page: 189
  issue: 1
  year: 1987
  ident: 9830_CR6
  publication-title: Constr. Approx.
  doi: 10.1007/BF01890563
– volume: 42
  start-page: 82
  issue: 1
  year: 2009
  ident: 9830_CR10
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2008.06.001
– volume: 7
  start-page: 56
  issue: 1
  year: 1991
  ident: 9830_CR26
  publication-title: J. Approx. Theory
  doi: 10.1007/BF02907546
– volume: 19
  start-page: 169
  issue: 2
  year: 1997
  ident: 9830_CR9
  publication-title: Adv. Appl. Math.
  doi: 10.1006/aama.1997.0533
– volume: 327
  start-page: 411
  year: 2017
  ident: 9830_CR19
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.06.008
– volume: 50
  start-page: 564
  year: 2013
  ident: 9830_CR29
  publication-title: J. Symb. Comput.
  doi: 10.1016/j.jsc.2012.10.002
– ident: 9830_CR30
– ident: 9830_CR21
  doi: 10.1007/978-3-0348-5685-0_11
– volume: 14
  start-page: 251
  issue: 1
  year: 1984
  ident: 9830_CR5
  publication-title: Rocky Mt. J. Math.
  doi: 10.1216/RMJ-1984-14-1-251
– volume: 47
  start-page: 237
  issue: 2
  year: 2018
  ident: 9830_CR17
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-017-9367-5
– volume: 194
  start-page: 4135
  year: 2005
  ident: 9830_CR31
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.10.008
– volume: 117
  start-page: 535
  year: 1997
  ident: 9830_CR8
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/S0022-4049(97)00026-1
– ident: 9830_CR14
  doi: 10.1007/s10444-020-09829-4
– volume: 310
  start-page: 325
  issue: 1
  year: 1988
  ident: 9830_CR7
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1988-0965757-9
– volume: 57
  start-page: 651
  issue: 1
  year: 1990
  ident: 9830_CR24
  publication-title: Numer. Math.
  doi: 10.1007/BF01386434
– volume: 204
  start-page: 116
  issue: 1
  year: 1998
  ident: 9830_CR28
  publication-title: J. Algebra
  doi: 10.1006/jabr.1997.7361
– volume-title: Handbook of Computer Aided Geometric Design
  year: 2002
  ident: 9830_CR1
– volume-title: Computational Algebraic Geometry, vol. 58
  year: 2003
  ident: 9830_CR25
  doi: 10.1017/CBO9780511756320
– volume: 75
  start-page: 101763
  year: 2019
  ident: 9830_CR12
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2019.07.002
– volume: 272
  start-page: 187
  year: 2016
  ident: 9830_CR15
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.08.019
– ident: 9830_CR4
  doi: 10.1007/BFb0069132
– volume: 80
  start-page: 101880
  year: 2020
  ident: 9830_CR18
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2020.101880
– ident: 9830_CR22
  doi: 10.1137/1.9781611970173
– volume: 87
  start-page: 905
  issue: 310
  year: 2018
  ident: 9830_CR11
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3224
– volume-title: Isogeometric Analysis: Toward Integration of CAD and FEA
  year: 2009
  ident: 9830_CR2
  doi: 10.1002/9780470749081
– volume: 7
  start-page: 401
  issue: 3
  year: 1991
  ident: 9830_CR27
  publication-title: Constr. Approx.
  doi: 10.1007/BF01888166
– volume: 79
  start-page: 1128
  issue: 6
  year: 1973
  ident: 9830_CR3
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1973-13351-8
SSID ssj0009675
Score 2.278907
Snippet In this paper, we study the dimension of bivariate polynomial splines of mixed smoothness on polygonal meshes. Here, “mixed smoothness” refers to the choice of...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Visualization
Subtitle A general recipe, and its application to planar meshes of arbitrary topologies
Title Counting the dimension of splines of mixed smoothness
URI https://link.springer.com/article/10.1007/s10444-020-09830-x
Volume 47
WOSCitedRecordID wos000608397300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9k-qAPTqfi_KIPvmkgbdMmeZTh8MUh-MHeSpukMHCbLFX255vr0s2BDPStlGso10vud7273wFch8pQVfCSSJ2khBnNSeGAK5EKE4Zc5NToetgEHwzEcCiffFOYbardm5RkfVL_aHZjjBEMd6gUMSUOOW4nyDaDMfrz24pqN63pdZ2tSeKiAeFbZX5fY90dredCaxfTb__v5Q5g30PK4G5hA4ewZSYdaHt4GfjNazuw97ikaLVHkPT8lIjA3Qw0kvzjj7NgWgYWu3SNxcvxaO7WsOOp-6B4KB7Da__-pfdA_AwFoiIZVi48TFWeGGRhcd5KxCJFvh2uRF5wUwgda1rI1EUtZRyW0iS84KrMI6YcrELoE59AazKdmFMIhDIsKiMdMwcZnUQupDBJTnMTKqok60LYqDJTnmAc51y8ZytqZNRS5rSU1VrK5l24WT7zsaDX2Ch922g_81vNbhA_-5v4OexGWLBSl2RfQKuafZpL2FFf1cjOrmob-waBFsof
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kCuqD06k4P_vgmwb6kTbJowzHxG0ITtlbadMUBvuQZcr-fHNdujmQgb6Vcg3lesn9rnf3O4BbTypXpiwnIgsjQlXGSGqAKxESE4aMJ67KimETrNvl_b54sU1huqx2L1OSxUn9o9mNUkow3HEFD1xikOM2xTE7GKO_vq-odqOCXtfYmiAmGuC2Veb3Ndbd0XoutHAxzer_Xu4QDiykdB4WNnAEW2pcg6qFl47dvLoG-50lRas-hrBhp0Q45qaTIck__jhzJrmjsUtXabwcDeZmDT2amA-Kh-IJvDUfe40WsTMUiPSFNzPhYSSTUCELi_FWPOAR8u0wyZOUqZRnQeamIjJRSx54uVAhS5nME59KA6sQ-gSnUBlPxuoMHC4V9XM_C6iBjEYi4YKrMHET5UlXCloHr1RlLC3BOM65GMYramTUUmy0FBdaiud1uFs-87Gg19gofV9qP7ZbTW8QP_-b-A3stnqddtx-6j5fwJ6PxStFefYlVGbTT3UFO_JrNtDT68LevgEE3c0D
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuiD06k4P_Pgm4b1I22SR5kORR3DL_ZW2iSFgevGWmV_vkmXfYEMxLdSrqFcLr3f9e5-B3DpCuWIhKaYyyDEREmKEw1cMRcmYUhZ7ChZDpug7TbrdnlnoYu_rHafpiQnPQ2GpSkrGkOZNhYa3wgh2IQ-Dme-gzWKXCc6kjFFXS-vH3Pa3bCk2tV2x7GODJhtm_l9jWXXtJwXLd1Nq_r_F92FHQs10c3ENvZgTWU1qFrYieyhzmuw_Tyjbs33IWja6RFI30TSkP-bH2pokKLcdO-q3Fz2e2O9Rt4f6I02H8sDeG_dvTXvsZ2tgIXH3UKHjaGIA2XYWbQXYz4LDQ8PFSxOqEqY9KWT8FBHM6nvplwFNKEijT0iNNwykMg_hEo2yNQRICYU8VJP-kRDSS0RM85UEDuxcoUjOKmDO1VrJCzxuJl_8RnNKZONliKtpajUUjSuw9XsmeGEdmOl9PV0JyJ7BPMV4sd_E7-Azc5tK3p6aD-ewJZnalrKqu1TqBSjL3UGG-K76OWj89L0fgCZXNXn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counting+the+dimension+of+splines+of+mixed+smoothness&rft.jtitle=Advances+in+computational+mathematics&rft.au=Toshniwal%2C+Deepesh&rft.au=DiPasquale%2C+Michael&rft.date=2021-02-01&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=47&rft.issue=1&rft_id=info:doi/10.1007%2Fs10444-020-09830-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_020_09830_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon