Machine learning augmented branch and bound for mixed integer linear programming

Mixed Integer Linear Programming (MILP) is a pillar of mathematical optimization that offers a powerful modeling language for a wide range of applications. The main engine for solving MILPs is the branch-and-bound algorithm. Adding to the enormous algorithmic progress in MILP solving of the past dec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming
Hlavní autori: Scavuzzo, Lara, Aardal, Karen, Lodi, Andrea, Yorke-Smith, Neil
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 22.08.2024
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Mixed Integer Linear Programming (MILP) is a pillar of mathematical optimization that offers a powerful modeling language for a wide range of applications. The main engine for solving MILPs is the branch-and-bound algorithm. Adding to the enormous algorithmic progress in MILP solving of the past decades, in more recent years there has been an explosive development in the use of machine learning for enhancing all main tasks involved in the branch-and-bound algorithm. These include primal heuristics, branching, cutting planes, node selection and solver configuration decisions. This article presents a survey of such approaches, addressing the vision of integration of machine learning and mathematical optimization as complementary technologies, and how this integration can benefit MILP solving. In particular, we give detailed attention to machine learning algorithms that automatically optimize some metric of branch-and-bound efficiency. We also address appropriate MILP representations, benchmarks and software tools used in the context of applying learning algorithms.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-024-02130-y