LQG Control and Sensing Co-Design

We investigate a linear-quadratic-Gaussian (LQG) control and sensing codesign problem, where one jointly designs sensing and control policies. We focus on the realistic case where the sensing design is selected among a finite set of available sensors, where each sensor is associated with a different...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 66; no. 4; pp. 1468 - 1483
Main Authors: Tzoumas, Vasileios, Carlone, Luca, Pappas, George J., Jadbabaie, Ali
Format: Journal Article
Language:English
Published: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9286, 1558-2523
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate a linear-quadratic-Gaussian (LQG) control and sensing codesign problem, where one jointly designs sensing and control policies. We focus on the realistic case where the sensing design is selected among a finite set of available sensors, where each sensor is associated with a different cost (e.g., power consumption). We consider two dual problem instances: sensing-constrained LQG control, where one maximizes a control performance subject to a sensor cost budget, and minimum-sensing LQG control, where one minimizes a sensor cost subject to performance constraints. We prove that no polynomial time algorithm guarantees across all problem instances a constant approximation factor from the optimal. Nonetheless, we present the first polynomial time algorithms with per-instance suboptimality guarantees. To this end, we leverage a separation principle, which partially decouples the design of sensing and control. Then, we frame LQG codesign as the optimization of approximately supermodular set functions; we develop novel algorithms to solve the problems; and we prove original results on the performance of the algorithms and establish connections between their suboptimality and control-theoretic quantities. We conclude the article by discussing two applications, namely, sensing-constrained formation control and resource-constrained robot navigation .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2020.2997661