Abnormality Monitoring in the Blast Furnace Ironmaking Process Based on Stacked Dynamic Target-Driven Denoising Autoencoders
Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a data-driven model to accurately monitor the abnormal conditions of blast furnaces. Generally, data-driven models primarily rely on feature extraction...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on industrial informatics Jg. 18; H. 3; S. 1854 - 1863 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1551-3203, 1941-0050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!