Abnormality Monitoring in the Blast Furnace Ironmaking Process Based on Stacked Dynamic Target-Driven Denoising Autoencoders

Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a data-driven model to accurately monitor the abnormal conditions of blast furnaces. Generally, data-driven models primarily rely on feature extraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics Jg. 18; H. 3; S. 1854 - 1863
Hauptverfasser: Jiang, Ke, Jiang, Zhaohui, Xie, Yongfang, Pan, Dong, Gui, Weihua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1551-3203, 1941-0050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!