Abnormality Monitoring in the Blast Furnace Ironmaking Process Based on Stacked Dynamic Target-Driven Denoising Autoencoders

Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a data-driven model to accurately monitor the abnormal conditions of blast furnaces. Generally, data-driven models primarily rely on feature extraction...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics Vol. 18; no. 3; pp. 1854 - 1863
Main Authors: Jiang, Ke, Jiang, Zhaohui, Xie, Yongfang, Pan, Dong, Gui, Weihua
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1551-3203, 1941-0050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a data-driven model to accurately monitor the abnormal conditions of blast furnaces. Generally, data-driven models primarily rely on feature extraction from high-dimensional raw data. Recently, deep learning networks have been developed and considered a promising technology in extracting high-level abstract features. However, most of these networks cannot capture deep target-related features for abnormality monitoring. Thus, this article proposes a novel stacked dynamic target-driven denoising autoencoder for layer-by-layer hierarchical feature representation, and the dynamic relationship between samples and targets is described by dynamic factors. Then, we design a corresponding target-driven reconstruction loss function to pretrain the deep network successively. Experimental results in an ironmaking plant demonstrate the effectiveness and feasibility of the proposed method.
AbstractList Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a data-driven model to accurately monitor the abnormal conditions of blast furnaces. Generally, data-driven models primarily rely on feature extraction from high-dimensional raw data. Recently, deep learning networks have been developed and considered a promising technology in extracting high-level abstract features. However, most of these networks cannot capture deep target-related features for abnormality monitoring. Thus, this article proposes a novel stacked dynamic target-driven denoising autoencoder for layer-by-layer hierarchical feature representation, and the dynamic relationship between samples and targets is described by dynamic factors. Then, we design a corresponding target-driven reconstruction loss function to pretrain the deep network successively. Experimental results in an ironmaking plant demonstrate the effectiveness and feasibility of the proposed method.
Author Xie, Yongfang
Gui, Weihua
Jiang, Ke
Jiang, Zhaohui
Pan, Dong
Author_xml – sequence: 1
  givenname: Ke
  orcidid: 0000-0002-2642-7948
  surname: Jiang
  fullname: Jiang, Ke
  email: jiangke@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 2
  givenname: Zhaohui
  orcidid: 0000-0002-4861-5819
  surname: Jiang
  fullname: Jiang, Zhaohui
  email: jzh0903@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 3
  givenname: Yongfang
  orcidid: 0000-0002-2060-6574
  surname: Xie
  fullname: Xie, Yongfang
  email: yfxie@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 4
  givenname: Dong
  orcidid: 0000-0002-1876-3108
  surname: Pan
  fullname: Pan, Dong
  email: pandong@csu.edu
  organization: School of Automation, Central South University, Changsha, China
– sequence: 5
  givenname: Weihua
  orcidid: 0000-0002-5337-6445
  surname: Gui
  fullname: Gui, Weihua
  email: gwh@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
BookMark eNp9kE1rGzEQhkVJoInTe6EXQc_rjj7WXh2dOEkXUhKIe17G2tlU9lpKJTlg6I_PLg455NDTvDDvMzDPOTvxwRNjXwVMhQDzY1XXUwlSTBVU2gjxiZ0Jo0UBUMLJkMtSFEqC-szOU9oAqDkoc8b-LdY-xB32Lh_4r-BdDtH5J-48z3-IX_aYMr_ZR4-WeB2D3-F23D_EYCklfomJWh48f8xot0NcHjzunOUrjE-Ui2V0L-T5knxwaQQX-xzI29BSTBfstMM-0Ze3OWG_b65XVz-Lu_vb-mpxV1hpRC6UBZQIclbqypi17QhtaTo0dl4qaRTMq1nbdWQrC4OLFqQ2pdJiTdhaqUlN2Pfj3ecY_u4p5WYTxpf61MjZQFeiHGxM2OzYsjGkFKlrrMuYXfA5ousbAc1ouhlMN6Pp5s30AMIH8Dm6HcbD_5BvR8QR0XvdaK2FUeoVea-MPA
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TIM_2022_3219482
crossref_primary_10_1109_TIM_2024_3381714
crossref_primary_10_1002_cjce_24790
crossref_primary_10_1109_TIM_2023_3252623
crossref_primary_10_1109_TAI_2024_3511515
crossref_primary_10_1016_j_chemolab_2022_104711
crossref_primary_10_1016_j_apt_2022_103893
crossref_primary_10_1109_TIM_2023_3239908
crossref_primary_10_1109_TIM_2023_3320734
crossref_primary_10_3390_su14169870
crossref_primary_10_1016_j_neucom_2025_130935
crossref_primary_10_1016_j_mineng_2025_109677
crossref_primary_10_1109_TII_2023_3312402
crossref_primary_10_1016_j_neucom_2024_127596
crossref_primary_10_1109_TII_2022_3216809
crossref_primary_10_1109_TIM_2025_3541708
crossref_primary_10_1109_TII_2023_3333841
crossref_primary_10_1109_JAS_2023_123954
crossref_primary_10_1016_j_conengprac_2025_106383
crossref_primary_10_1002_cjce_25312
crossref_primary_10_1109_TII_2023_3268740
crossref_primary_10_1016_j_comcom_2023_12_043
crossref_primary_10_1109_TIM_2024_3522663
crossref_primary_10_3390_machines10121122
crossref_primary_10_1016_j_aei_2024_102946
crossref_primary_10_1016_j_conengprac_2024_105940
crossref_primary_10_1109_JSEN_2025_3550574
crossref_primary_10_1109_TNNLS_2023_3340741
crossref_primary_10_1109_JSEN_2022_3199264
crossref_primary_10_1109_TETCI_2024_3358377
crossref_primary_10_1016_j_ins_2023_119176
crossref_primary_10_1109_TIM_2022_3185325
crossref_primary_10_1109_TIM_2022_3216662
crossref_primary_10_1007_s00521_024_10539_x
crossref_primary_10_1016_j_jfranklin_2024_107330
crossref_primary_10_1109_TIM_2025_3545216
crossref_primary_10_1109_TIM_2025_3566715
crossref_primary_10_1515_auto_2023_0031
crossref_primary_10_1016_j_compeleceng_2025_110247
crossref_primary_10_1109_TII_2023_3300414
crossref_primary_10_1109_TIM_2025_3541813
crossref_primary_10_1109_TIM_2025_3597695
Cites_doi 10.1021/acs.iecr.8b04689
10.1016/j.jprocont.2014.12.001
10.2307/2346830
10.1109/TII.2019.2940475
10.1109/TIE.2020.2967708
10.3390/s16101695
10.1109/TIM.2017.2669947
10.1109/TII.2012.2214394
10.1016/j.ins.2020.02.039
10.1145/2939672.2939785
10.1109/TIE.2018.2835402
10.1109/TII.2009.2025124
10.1145/1390156.1390294
10.1109/TIE.2019.2903770
10.1109/MSP.2012.2205597
10.1016/j.isatra.2019.07.001
10.1109/TII.2020.2972332
10.1109/TIE.2019.2942560
10.1162/neco.2006.18.7.1527
10.1016/j.conengprac.2020.104354
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2021.3084911
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 1863
ExternalDocumentID 10_1109_TII_2021_3084911
9444193
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation for Distinguished Young Scholars of China
  grantid: 61725306
– fundername: National Natural Science Foundation of China
  grantid: 61773406
  funderid: 10.13039/501100001809
– fundername: National Major Scientific Research Equipment of China
  grantid: 61927803
– fundername: Central South University Post-Graduate Independent Exploration and Innovation Project
  grantid: 2021zzts0183
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-3c0a2a02654899bcfeac59fa9c7532930786dffec8c0110d02495341beadc24e3
IEDL.DBID RIE
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728195600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:13:34 EDT 2025
Tue Nov 18 22:21:56 EST 2025
Sat Nov 29 04:16:57 EST 2025
Wed Aug 27 05:11:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-3c0a2a02654899bcfeac59fa9c7532930786dffec8c0110d02495341beadc24e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2642-7948
0000-0002-4861-5819
0000-0002-2060-6574
0000-0002-1876-3108
0000-0002-5337-6445
PQID 2607881570
PQPubID 85507
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TII_2021_3084911
ieee_primary_9444193
proquest_journals_2607881570
crossref_primary_10_1109_TII_2021_3084911
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References krizhevsky (ref12) 2012
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
vincent (ref13) 2010; 11
ref18
ref7
ref9
maaten (ref24) 2008; 9
ref4
ref3
ref6
ref5
jiang (ref8) 2016; 42
References_xml – ident: ref18
  doi: 10.1021/acs.iecr.8b04689
– ident: ref21
  doi: 10.1016/j.jprocont.2014.12.001
– start-page: 1097
  year: 2012
  ident: ref12
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref19
  doi: 10.2307/2346830
– ident: ref3
  doi: 10.1109/TII.2019.2940475
– ident: ref9
  doi: 10.1109/TIE.2020.2967708
– ident: ref16
  doi: 10.3390/s16101695
– ident: ref15
  doi: 10.1109/TIM.2017.2669947
– volume: 42
  start-page: 715
  year: 2016
  ident: ref8
  article-title: Two-dimensional prediction for silicon content of hot metal of blast furnace based on bootstrap
  publication-title: Acta Autom Sin
– ident: ref6
  doi: 10.1109/TII.2012.2214394
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref13
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref2
  doi: 10.1016/j.ins.2020.02.039
– ident: ref23
  doi: 10.1145/2939672.2939785
– ident: ref5
  doi: 10.1109/TIE.2018.2835402
– ident: ref7
  doi: 10.1109/TII.2009.2025124
– ident: ref14
  doi: 10.1145/1390156.1390294
– ident: ref1
  doi: 10.1109/TIE.2019.2903770
– ident: ref11
  doi: 10.1109/MSP.2012.2205597
– ident: ref17
  doi: 10.1016/j.isatra.2019.07.001
– ident: ref4
  doi: 10.1109/TII.2020.2972332
– ident: ref22
  doi: 10.1109/TIE.2019.2942560
– ident: ref10
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref20
  doi: 10.1016/j.conengprac.2020.104354
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref24
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
SSID ssj0037039
Score 2.5356221
Snippet Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1854
SubjectTerms Abnormalities
Blast furnace (BF)
Blast furnace practice
Blast furnaces
Data models
Deep learning
denoising autoencoder (DAE)
Design factors
dynamic target-driven denoising autoencoder (D-DAE)
Feature extraction
Iron
Ironmaking
Machine learning
Monitoring
Noise reduction
process monitoring
Title Abnormality Monitoring in the Blast Furnace Ironmaking Process Based on Stacked Dynamic Target-Driven Denoising Autoencoders
URI https://ieeexplore.ieee.org/document/9444193
https://www.proquest.com/docview/2607881570
Volume 18
WOSCitedRecordID wos000728195600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1q8aAHv6pYrbIHL4JrN9m0yR6rtViQ4qGKt9D9KBQkkTb15I93ZpMWRRG8BZINIW935s3uzBuAi9B1hZoKy6PIOB5ZZbjWwnFtu0pHgTOJr616fohHo-TlRT3W4GpdC-Oc88ln7pou_Vm-zc2StsraKkLnreQGbMRxXNZqrayuxJmrvDZqJ-AyFHJ1JClUezwcYiAYBtdSJJEKgm8uyPdU-WGIvXcZ7P7vu_Zgp2KRrFfCvg81lx3A9hdtwQZ89HRGfJRoNitXLt1gs4wh52M3yJoLNqD3GMeGVOvm-1KxqnKA3aB7syzPGNJRXOmW9cve9Wzsc8d5f052kvVdls9ov4H1lkVOqpiUGX0IT4O78e09r1otcBOqoODSiEk4wXgMAxiltJmiPe6o6UQZDGeQESCR6FpKMEkMEQZLQoMddIAaJ6IJIyePoJ7lmTsG1g0CnWgZx1bYyFmbxKEz6BOtlBM692tCe_X3U1PpkFM7jNfUxyNCpYhXSnilFV5NuFyPeCs1OP54tkH4rJ-roGlCawVwWi3SRYqhHInpd2Jx8vuoU9gKqdrBp5y1oF7Ml-4MNs17MVvMz_38-wR6Qdl4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB2VgkQ5lEKpGlpgD1yQ2Ga_HHuPKSFqRBpxCKg3K_sRKRKyq9TpqT-embUTgUBI3CzZa1l-uzNvdmfeALxXcSDsUgRujI_cBOu5cyJyFwbWGRl9kWqrvk_z2ay4ubFf9-DjrhYmxpiSz-IFXaaz_FD7DW2V9a1B5231I3icGaNkW621tbsa565N6qiZ5FoJvT2UFLY_n0wwFFTyQovCWCl_c0Kpq8ofpjj5l_Hz__uyIzjseCQbtsC_gL1YvYRnv6gLHsPD0FXESIlos3bt0g22qhiyPnaJvLlhY3qPj2xC1W6pMxXragfYJTq4wOqKISHFtR7YqO1ez-Ype5yP1mQp2ShW9Yp2HNhw09Ski0m50a_g2_jz_NMV75otcK-sbLj2YqEWGJFhCGOt80u0yJldLqzHgAY5AVKJQaAUk8ITZQgkNZihC3Q4Fb0yUZ_AflVX8RTYQEpXOJ3nQQQTQyhyFT16xaD1gk7-etDf_v3Sd0rk1BDjR5kiEmFLxKskvMoOrx582I24bVU4_vHsMeGze66DpgfnW4DLbpnelRjMkZx-lovXfx_1Dp5eza-n5XQy-3IGB4pqH1IC2jnsN-tNfANP_H2zulu_TXPxJ_CO3L8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abnormality+Monitoring+in+the+Blast+Furnace+Ironmaking+Process+Based+on+Stacked+Dynamic+Target-Driven+Denoising+Autoencoders&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Jiang%2C+Ke&rft.au=Jiang%2C+Zhaohui&rft.au=Xie%2C+Yongfang&rft.au=Pan%2C+Dong&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=18&rft.issue=3&rft.spage=1854&rft_id=info:doi/10.1109%2FTII.2021.3084911&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon