Abnormality Monitoring in the Blast Furnace Ironmaking Process Based on Stacked Dynamic Target-Driven Denoising Autoencoders
Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a data-driven model to accurately monitor the abnormal conditions of blast furnaces. Generally, data-driven models primarily rely on feature extraction...
Saved in:
| Published in: | IEEE transactions on industrial informatics Vol. 18; no. 3; pp. 1854 - 1863 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1551-3203, 1941-0050 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a data-driven model to accurately monitor the abnormal conditions of blast furnaces. Generally, data-driven models primarily rely on feature extraction from high-dimensional raw data. Recently, deep learning networks have been developed and considered a promising technology in extracting high-level abstract features. However, most of these networks cannot capture deep target-related features for abnormality monitoring. Thus, this article proposes a novel stacked dynamic target-driven denoising autoencoder for layer-by-layer hierarchical feature representation, and the dynamic relationship between samples and targets is described by dynamic factors. Then, we design a corresponding target-driven reconstruction loss function to pretrain the deep network successively. Experimental results in an ironmaking plant demonstrate the effectiveness and feasibility of the proposed method. |
|---|---|
| AbstractList | Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a data-driven model to accurately monitor the abnormal conditions of blast furnaces. Generally, data-driven models primarily rely on feature extraction from high-dimensional raw data. Recently, deep learning networks have been developed and considered a promising technology in extracting high-level abstract features. However, most of these networks cannot capture deep target-related features for abnormality monitoring. Thus, this article proposes a novel stacked dynamic target-driven denoising autoencoder for layer-by-layer hierarchical feature representation, and the dynamic relationship between samples and targets is described by dynamic factors. Then, we design a corresponding target-driven reconstruction loss function to pretrain the deep network successively. Experimental results in an ironmaking plant demonstrate the effectiveness and feasibility of the proposed method. |
| Author | Xie, Yongfang Gui, Weihua Jiang, Ke Jiang, Zhaohui Pan, Dong |
| Author_xml | – sequence: 1 givenname: Ke orcidid: 0000-0002-2642-7948 surname: Jiang fullname: Jiang, Ke email: jiangke@csu.edu.cn organization: School of Automation, Central South University, Changsha, China – sequence: 2 givenname: Zhaohui orcidid: 0000-0002-4861-5819 surname: Jiang fullname: Jiang, Zhaohui email: jzh0903@csu.edu.cn organization: School of Automation, Central South University, Changsha, China – sequence: 3 givenname: Yongfang orcidid: 0000-0002-2060-6574 surname: Xie fullname: Xie, Yongfang email: yfxie@csu.edu.cn organization: School of Automation, Central South University, Changsha, China – sequence: 4 givenname: Dong orcidid: 0000-0002-1876-3108 surname: Pan fullname: Pan, Dong email: pandong@csu.edu organization: School of Automation, Central South University, Changsha, China – sequence: 5 givenname: Weihua orcidid: 0000-0002-5337-6445 surname: Gui fullname: Gui, Weihua email: gwh@csu.edu.cn organization: School of Automation, Central South University, Changsha, China |
| BookMark | eNp9kE1rGzEQhkVJoInTe6EXQc_rjj7WXh2dOEkXUhKIe17G2tlU9lpKJTlg6I_PLg455NDTvDDvMzDPOTvxwRNjXwVMhQDzY1XXUwlSTBVU2gjxiZ0Jo0UBUMLJkMtSFEqC-szOU9oAqDkoc8b-LdY-xB32Lh_4r-BdDtH5J-48z3-IX_aYMr_ZR4-WeB2D3-F23D_EYCklfomJWh48f8xot0NcHjzunOUrjE-Ui2V0L-T5knxwaQQX-xzI29BSTBfstMM-0Ze3OWG_b65XVz-Lu_vb-mpxV1hpRC6UBZQIclbqypi17QhtaTo0dl4qaRTMq1nbdWQrC4OLFqQ2pdJiTdhaqUlN2Pfj3ecY_u4p5WYTxpf61MjZQFeiHGxM2OzYsjGkFKlrrMuYXfA5ousbAc1ouhlMN6Pp5s30AMIH8Dm6HcbD_5BvR8QR0XvdaK2FUeoVea-MPA |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1109_TIM_2022_3219482 crossref_primary_10_1109_TIM_2024_3381714 crossref_primary_10_1002_cjce_24790 crossref_primary_10_1109_TIM_2023_3252623 crossref_primary_10_1109_TAI_2024_3511515 crossref_primary_10_1016_j_chemolab_2022_104711 crossref_primary_10_1016_j_apt_2022_103893 crossref_primary_10_1109_TIM_2023_3239908 crossref_primary_10_1109_TIM_2023_3320734 crossref_primary_10_3390_su14169870 crossref_primary_10_1016_j_neucom_2025_130935 crossref_primary_10_1016_j_mineng_2025_109677 crossref_primary_10_1109_TII_2023_3312402 crossref_primary_10_1016_j_neucom_2024_127596 crossref_primary_10_1109_TII_2022_3216809 crossref_primary_10_1109_TIM_2025_3541708 crossref_primary_10_1109_TII_2023_3333841 crossref_primary_10_1109_JAS_2023_123954 crossref_primary_10_1016_j_conengprac_2025_106383 crossref_primary_10_1002_cjce_25312 crossref_primary_10_1109_TII_2023_3268740 crossref_primary_10_1016_j_comcom_2023_12_043 crossref_primary_10_1109_TIM_2024_3522663 crossref_primary_10_3390_machines10121122 crossref_primary_10_1016_j_aei_2024_102946 crossref_primary_10_1016_j_conengprac_2024_105940 crossref_primary_10_1109_JSEN_2025_3550574 crossref_primary_10_1109_TNNLS_2023_3340741 crossref_primary_10_1109_JSEN_2022_3199264 crossref_primary_10_1109_TETCI_2024_3358377 crossref_primary_10_1016_j_ins_2023_119176 crossref_primary_10_1109_TIM_2022_3185325 crossref_primary_10_1109_TIM_2022_3216662 crossref_primary_10_1007_s00521_024_10539_x crossref_primary_10_1016_j_jfranklin_2024_107330 crossref_primary_10_1109_TIM_2025_3545216 crossref_primary_10_1109_TIM_2025_3566715 crossref_primary_10_1515_auto_2023_0031 crossref_primary_10_1016_j_compeleceng_2025_110247 crossref_primary_10_1109_TII_2023_3300414 crossref_primary_10_1109_TIM_2025_3541813 crossref_primary_10_1109_TIM_2025_3597695 |
| Cites_doi | 10.1021/acs.iecr.8b04689 10.1016/j.jprocont.2014.12.001 10.2307/2346830 10.1109/TII.2019.2940475 10.1109/TIE.2020.2967708 10.3390/s16101695 10.1109/TIM.2017.2669947 10.1109/TII.2012.2214394 10.1016/j.ins.2020.02.039 10.1145/2939672.2939785 10.1109/TIE.2018.2835402 10.1109/TII.2009.2025124 10.1145/1390156.1390294 10.1109/TIE.2019.2903770 10.1109/MSP.2012.2205597 10.1016/j.isatra.2019.07.001 10.1109/TII.2020.2972332 10.1109/TIE.2019.2942560 10.1162/neco.2006.18.7.1527 10.1016/j.conengprac.2020.104354 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2021.3084911 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 1863 |
| ExternalDocumentID | 10_1109_TII_2021_3084911 9444193 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation for Distinguished Young Scholars of China grantid: 61725306 – fundername: National Natural Science Foundation of China grantid: 61773406 funderid: 10.13039/501100001809 – fundername: National Major Scientific Research Equipment of China grantid: 61927803 – fundername: Central South University Post-Graduate Independent Exploration and Innovation Project grantid: 2021zzts0183 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-3c0a2a02654899bcfeac59fa9c7532930786dffec8c0110d02495341beadc24e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728195600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:13:34 EDT 2025 Tue Nov 18 22:21:56 EST 2025 Sat Nov 29 04:16:57 EST 2025 Wed Aug 27 05:11:52 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-3c0a2a02654899bcfeac59fa9c7532930786dffec8c0110d02495341beadc24e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2642-7948 0000-0002-4861-5819 0000-0002-2060-6574 0000-0002-1876-3108 0000-0002-5337-6445 |
| PQID | 2607881570 |
| PQPubID | 85507 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_TII_2021_3084911 ieee_primary_9444193 proquest_journals_2607881570 crossref_primary_10_1109_TII_2021_3084911 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | krizhevsky (ref12) 2012 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 vincent (ref13) 2010; 11 ref18 ref7 ref9 maaten (ref24) 2008; 9 ref4 ref3 ref6 ref5 jiang (ref8) 2016; 42 |
| References_xml | – ident: ref18 doi: 10.1021/acs.iecr.8b04689 – ident: ref21 doi: 10.1016/j.jprocont.2014.12.001 – start-page: 1097 year: 2012 ident: ref12 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref19 doi: 10.2307/2346830 – ident: ref3 doi: 10.1109/TII.2019.2940475 – ident: ref9 doi: 10.1109/TIE.2020.2967708 – ident: ref16 doi: 10.3390/s16101695 – ident: ref15 doi: 10.1109/TIM.2017.2669947 – volume: 42 start-page: 715 year: 2016 ident: ref8 article-title: Two-dimensional prediction for silicon content of hot metal of blast furnace based on bootstrap publication-title: Acta Autom Sin – ident: ref6 doi: 10.1109/TII.2012.2214394 – volume: 11 start-page: 3371 year: 2010 ident: ref13 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref2 doi: 10.1016/j.ins.2020.02.039 – ident: ref23 doi: 10.1145/2939672.2939785 – ident: ref5 doi: 10.1109/TIE.2018.2835402 – ident: ref7 doi: 10.1109/TII.2009.2025124 – ident: ref14 doi: 10.1145/1390156.1390294 – ident: ref1 doi: 10.1109/TIE.2019.2903770 – ident: ref11 doi: 10.1109/MSP.2012.2205597 – ident: ref17 doi: 10.1016/j.isatra.2019.07.001 – ident: ref4 doi: 10.1109/TII.2020.2972332 – ident: ref22 doi: 10.1109/TIE.2019.2942560 – ident: ref10 doi: 10.1162/neco.2006.18.7.1527 – ident: ref20 doi: 10.1016/j.conengprac.2020.104354 – volume: 9 start-page: 2579 year: 2008 ident: ref24 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res |
| SSID | ssj0037039 |
| Score | 2.5356221 |
| Snippet | Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This article proposes a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1854 |
| SubjectTerms | Abnormalities Blast furnace (BF) Blast furnace practice Blast furnaces Data models Deep learning denoising autoencoder (DAE) Design factors dynamic target-driven denoising autoencoder (D-DAE) Feature extraction Iron Ironmaking Machine learning Monitoring Noise reduction process monitoring |
| Title | Abnormality Monitoring in the Blast Furnace Ironmaking Process Based on Stacked Dynamic Target-Driven Denoising Autoencoders |
| URI | https://ieeexplore.ieee.org/document/9444193 https://www.proquest.com/docview/2607881570 |
| Volume | 18 |
| WOSCitedRecordID | wos000728195600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1q8aAHv6pYrbIHL4JrN9m0yR6rtViQ4qGKt9D9KBQkkTb15I93ZpMWRRG8BZINIW935s3uzBuAi9B1hZoKy6PIOB5ZZbjWwnFtu0pHgTOJr616fohHo-TlRT3W4GpdC-Oc88ln7pou_Vm-zc2StsraKkLnreQGbMRxXNZqrayuxJmrvDZqJ-AyFHJ1JClUezwcYiAYBtdSJJEKgm8uyPdU-WGIvXcZ7P7vu_Zgp2KRrFfCvg81lx3A9hdtwQZ89HRGfJRoNitXLt1gs4wh52M3yJoLNqD3GMeGVOvm-1KxqnKA3aB7syzPGNJRXOmW9cve9Wzsc8d5f052kvVdls9ov4H1lkVOqpiUGX0IT4O78e09r1otcBOqoODSiEk4wXgMAxiltJmiPe6o6UQZDGeQESCR6FpKMEkMEQZLQoMddIAaJ6IJIyePoJ7lmTsG1g0CnWgZx1bYyFmbxKEz6BOtlBM692tCe_X3U1PpkFM7jNfUxyNCpYhXSnilFV5NuFyPeCs1OP54tkH4rJ-roGlCawVwWi3SRYqhHInpd2Jx8vuoU9gKqdrBp5y1oF7Ml-4MNs17MVvMz_38-wR6Qdl4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB2VgkQ5lEKpGlpgD1yQ2Ga_HHuPKSFqRBpxCKg3K_sRKRKyq9TpqT-embUTgUBI3CzZa1l-uzNvdmfeALxXcSDsUgRujI_cBOu5cyJyFwbWGRl9kWqrvk_z2ay4ubFf9-DjrhYmxpiSz-IFXaaz_FD7DW2V9a1B5231I3icGaNkW621tbsa565N6qiZ5FoJvT2UFLY_n0wwFFTyQovCWCl_c0Kpq8ofpjj5l_Hz__uyIzjseCQbtsC_gL1YvYRnv6gLHsPD0FXESIlos3bt0g22qhiyPnaJvLlhY3qPj2xC1W6pMxXragfYJTq4wOqKISHFtR7YqO1ez-Ype5yP1mQp2ShW9Yp2HNhw09Ski0m50a_g2_jz_NMV75otcK-sbLj2YqEWGJFhCGOt80u0yJldLqzHgAY5AVKJQaAUk8ITZQgkNZihC3Q4Fb0yUZ_AflVX8RTYQEpXOJ3nQQQTQyhyFT16xaD1gk7-etDf_v3Sd0rk1BDjR5kiEmFLxKskvMoOrx582I24bVU4_vHsMeGze66DpgfnW4DLbpnelRjMkZx-lovXfx_1Dp5eza-n5XQy-3IGB4pqH1IC2jnsN-tNfANP_H2zulu_TXPxJ_CO3L8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abnormality+Monitoring+in+the+Blast+Furnace+Ironmaking+Process+Based+on+Stacked+Dynamic+Target-Driven+Denoising+Autoencoders&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Jiang%2C+Ke&rft.au=Jiang%2C+Zhaohui&rft.au=Xie%2C+Yongfang&rft.au=Pan%2C+Dong&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=18&rft.issue=3&rft.spage=1854&rft_id=info:doi/10.1109%2FTII.2021.3084911&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |