LSTM-MPC: A Deep Learning Based Predictive Control Method for Multimode Process Control

Modern industrial processes often operate under different modes, which brings challenges to model predictive control (MPC). Recently, most MPC related methods would establish prediction models independently for different modes, which results in their control effect highly relying on switching strate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial electronics (1982) Ročník 70; číslo 11; s. 1 - 10
Hlavní autoři: Huang, Keke, Wei, Ke, Li, Fanbiao, Yang, Chunhua, Gui, Weihua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0046, 1557-9948
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Modern industrial processes often operate under different modes, which brings challenges to model predictive control (MPC). Recently, most MPC related methods would establish prediction models independently for different modes, which results in their control effect highly relying on switching strategies. Inspired by the powerful representation capabilities of deep learning, this paper proposed a deep learning based MPC method. Specifically, the LSTM network is applied to predict behaviours of controlled system, which can automatically match different operation modes without switching strategy. Then combined with MPC framework, an adaptive gradient descent method is introduced to handle optimization problem and its constraints. In addition, stability and feasibility analysis have been conducted from the aspect of theory to ensure practical application of the proposed method. Experiments on a numerical simulation process and an industrial process platform show the strength and reliability of the proposed method, which reduces the overshoot by about 10<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> compared to common learning-based MPC methods and improves the control accuracy effectively.
AbstractList Modern industrial processes often operate under different modes, which brings challenges to model predictive control (MPC). Recently, most MPC related methods would establish prediction models independently for different modes, which results in their control effect highly relying on switching strategies. Inspired by the powerful representation capabilities of deep learning, this paper proposed a deep learning based MPC method. Specifically, the LSTM network is applied to predict behaviours of controlled system, which can automatically match different operation modes without switching strategy. Then combined with MPC framework, an adaptive gradient descent method is introduced to handle optimization problem and its constraints. In addition, stability and feasibility analysis have been conducted from the aspect of theory to ensure practical application of the proposed method. Experiments on a numerical simulation process and an industrial process platform show the strength and reliability of the proposed method, which reduces the overshoot by about 10<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> compared to common learning-based MPC methods and improves the control accuracy effectively.
Modern industrial processes often operate under different modes, which brings challenges to model predictive control (MPC). Recently, most MPC related methods would establish prediction models independently for different modes, which results in their control effect highly relying on switching strategies. Inspired by the powerful representation capabilities of deep learning, this article proposed a deep learning based MPC method. Specifically, the LSTM network is applied to predict behaviors of controlled system, which can automatically match different operation modes without switching strategy. Then combined with MPC framework, an adaptive gradient descent method is introduced to handle optimization problem and its constraints. In addition, stability and feasibility analysis have been conducted from the aspect of theory to ensure practical application of the proposed method. Experiments on a numerical simulation process and an industrial process platform show the strength and reliability of the proposed method, which reduces the overshoot by about 10[Formula Omitted] compared to common learning-based MPC methods and improves the control accuracy effectively.
Author Gui, Weihua
Huang, Keke
Wei, Ke
Li, Fanbiao
Yang, Chunhua
Author_xml – sequence: 1
  givenname: Keke
  orcidid: 0000-0003-3553-3424
  surname: Huang
  fullname: Huang, Keke
  organization: School of Automation, Central South University, Changsha, China
– sequence: 2
  givenname: Ke
  surname: Wei
  fullname: Wei, Ke
  organization: School of Automation, Central South University, Changsha, China
– sequence: 3
  givenname: Fanbiao
  surname: Li
  fullname: Li, Fanbiao
  organization: School of Automation, Central South University, Changsha, China
– sequence: 4
  givenname: Chunhua
  orcidid: 0000-0002-3770-9887
  surname: Yang
  fullname: Yang, Chunhua
  organization: School of Automation, Central South University, Changsha, China
– sequence: 5
  givenname: Weihua
  surname: Gui
  fullname: Gui, Weihua
  organization: School of Automation, Central South University, Changsha, China
BookMark eNp9kTFPwzAQRi0EEm1hR2KxxJxyduLEYSulQKVGVKKIMXLsC7hq42KnSPx7UrUwMDDd8r37dO_65LhxDRJywWDIGOTXi-lkyIHzYcx5HvP4iPSYEFmU54k8Jj3gmYwAkvSU9ENYArBEMNEjr7PnRREV8_ENHdE7xA2dofKNbd7orQpo6Nyjsbq1n0jHrmm9W9EC23dnaO08Lbar1q6dwS7nNIbwEzojJ7VaBTw_zAF5uZ8sxo_R7OlhOh7NIs1z1kZxVUmjGZdSS66MTOoqEQaUBBSxyJSsmJaKg6kBqiRNM26URqzrLE-rOmfxgFzt9268-9hiaMul2_qmqyy5ZCyLQUDapWCf0t6F4LEuN96ulf8qGZQ7fWWnr9zpKw_6OiT9g2jbqtbuzlN29R94uQctIv725N0fMiHib-0ifY0
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_apm_2025_116348
crossref_primary_10_1016_j_energy_2025_135701
crossref_primary_10_29109_gujsc_1726037
crossref_primary_10_1016_j_asoc_2025_113674
crossref_primary_10_1016_j_apenergy_2024_124164
crossref_primary_10_1038_s41598_025_01290_x
crossref_primary_10_3390_electronics13214241
crossref_primary_10_1016_j_neucom_2025_129712
crossref_primary_10_1109_ACCESS_2025_3554168
crossref_primary_10_1109_TCST_2023_3279623
crossref_primary_10_1016_j_isatra_2024_04_019
crossref_primary_10_1109_TASE_2024_3524472
crossref_primary_10_1016_j_chaos_2023_113739
crossref_primary_10_3390_wevj16090524
crossref_primary_10_3390_app151910329
crossref_primary_10_1109_JSEN_2024_3401678
crossref_primary_10_1007_s10489_023_05157_4
crossref_primary_10_1109_TIA_2024_3351959
crossref_primary_10_1007_s42835_024_01982_w
crossref_primary_10_3390_s25072014
crossref_primary_10_1080_00207179_2024_2366435
crossref_primary_10_1016_j_trd_2025_104896
crossref_primary_10_1007_s10845_024_02438_8
crossref_primary_10_1109_JAS_2024_124212
crossref_primary_10_1115_1_4067768
crossref_primary_10_1109_TII_2024_3393503
crossref_primary_10_3390_wevj16040206
crossref_primary_10_1109_TITS_2024_3421626
crossref_primary_10_1115_1_4069104
crossref_primary_10_1109_JSYST_2024_3406800
crossref_primary_10_1109_TASE_2025_3529124
crossref_primary_10_1007_s00521_024_09710_1
crossref_primary_10_1016_j_neucom_2025_129418
crossref_primary_10_1109_JAS_2024_124929
crossref_primary_10_3390_electronics14102000
crossref_primary_10_1016_j_neucom_2025_131048
crossref_primary_10_1109_TIA_2023_3335033
crossref_primary_10_3390_a16080387
crossref_primary_10_1007_s10489_023_05234_8
crossref_primary_10_1088_1361_6501_ad8947
crossref_primary_10_1177_01423312241262079
crossref_primary_10_1109_TIE_2023_3323745
crossref_primary_10_1007_s11071_024_10342_2
crossref_primary_10_1109_TII_2025_3574400
crossref_primary_10_1080_02626667_2025_2464949
crossref_primary_10_1109_TCSII_2025_3557419
crossref_primary_10_1016_j_applthermaleng_2025_126202
crossref_primary_10_1109_TII_2025_3567401
crossref_primary_10_1109_TSMC_2023_3341031
crossref_primary_10_1109_TII_2024_3438234
crossref_primary_10_3390_a18080508
Cites_doi 10.1016/j.arcontrol.2004.01.004
10.1016/j.neunet.2019.09.035
10.1016/j.conengprac.2020.104319
10.1016/j.powtec.2019.10.065
10.1109/TNNLS.2013.2261574
10.1109/TNNLS.2016.2561702
10.1109/TIE.2020.2979560
10.1016/S1474-6670(17)58026-X
10.1109/TNNLS.2015.2465174
10.1016/j.oceaneng.2018.06.068
10.1109/TIE.2019.2903743
10.1016/j.conengprac.2010.05.012
10.1109/TNNLS.2020.3015869
10.1002/aic.16729
10.1109/TII.2020.2969729
10.1007/s10489-021-02770-z
10.1109/TIE.2013.2261039
10.1016/j.conengprac.2015.08.009
10.1016/S0005-1098(99)00113-2
10.1109/TCYB.2022.3178878
10.1109/TIE.2011.2169636
10.1109/TII.2022.3161640
10.1016/j.ins.2003.10.011
10.1109/72.279181
10.1109/TIE.2013.2266086
10.1109/TIE.2015.2492946
10.1109/JIOT.2021.3078330
10.1109/TAC.2017.2753460
10.1016/j.jprocont.2020.05.009
10.1016/j.knosys.2019.105006
10.1016/j.jprocont.2017.02.014
10.1109/TIE.2017.2779442
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2022.3229323
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 10
ExternalDocumentID 10_1109_TIE_2022_3229323
9994755
Genre orig-research
GrantInformation_xml – fundername: Major Key Project of Peng Cheng Laboratory (PCL)
  grantid: PCL2021A09
– fundername: National Natural Science Foundation of China
  grantid: 62073340; 61860206014
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2022YFB3304900; 2019YFB1705300
– fundername: Science and Technology Innovation Program of Hunan Province
  grantid: 2022JJ10083; 2021RC3018; 2021RC4054
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
5VS
9M8
AAYXX
ACKIV
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
VJK
7SP
8FD
AARMG
ABAZT
L7M
ID FETCH-LOGICAL-c291t-3bb8dc1288c82ad84fb45d0a80e5357a8b1c8a20df00b46672daceeff796bf913
IEDL.DBID RIE
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986714600072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0046
IngestDate Mon Jun 30 10:12:43 EDT 2025
Tue Nov 18 22:24:33 EST 2025
Sat Nov 29 01:31:59 EST 2025
Tue Nov 25 14:44:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-3bb8dc1288c82ad84fb45d0a80e5357a8b1c8a20df00b46672daceeff796bf913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3553-3424
0000-0002-3770-9887
PQID 2811730506
PQPubID 85464
PageCount 10
ParticipantIDs crossref_primary_10_1109_TIE_2022_3229323
crossref_citationtrail_10_1109_TIE_2022_3229323
proquest_journals_2811730506
ieee_primary_9994755
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref31
ref30
huang (ref21) 2021; 52
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
han (ref27) 2013; 24
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
tang (ref13) 0; 29
References_xml – ident: ref11
  doi: 10.1016/j.arcontrol.2004.01.004
– ident: ref16
  doi: 10.1016/j.neunet.2019.09.035
– ident: ref26
  doi: 10.1016/j.conengprac.2020.104319
– ident: ref25
  doi: 10.1016/j.powtec.2019.10.065
– volume: 24
  start-page: 1425
  year: 2013
  ident: ref27
  article-title: Real-time model predictive control using a self-organizing neural network
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2261574
– ident: ref32
  doi: 10.1109/TNNLS.2016.2561702
– ident: ref17
  doi: 10.1109/TIE.2020.2979560
– ident: ref10
  doi: 10.1016/S1474-6670(17)58026-X
– ident: ref18
  doi: 10.1109/TNNLS.2015.2465174
– ident: ref14
  doi: 10.1016/j.oceaneng.2018.06.068
– ident: ref9
  doi: 10.1109/TIE.2019.2903743
– ident: ref33
  doi: 10.1016/j.conengprac.2010.05.012
– ident: ref15
  doi: 10.1109/TNNLS.2020.3015869
– ident: ref28
  doi: 10.1002/aic.16729
– ident: ref19
  doi: 10.1109/TII.2020.2969729
– volume: 52
  start-page: 14773
  year: 2021
  ident: ref21
  article-title: A multi-mode traffic flow prediction method with clustering based attention convolution LSTM
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02770-z
– volume: 29
  start-page: 622
  year: 0
  ident: ref13
  article-title: Multi-model MPC for nonlinear systems: Case study of a complex PH neutralization process
  publication-title: Proc 21st Eur Symp Comput Aided Process Eng
– ident: ref4
  doi: 10.1109/TIE.2013.2261039
– ident: ref5
  doi: 10.1016/j.conengprac.2015.08.009
– ident: ref30
  doi: 10.1016/S0005-1098(99)00113-2
– ident: ref7
  doi: 10.1109/TCYB.2022.3178878
– ident: ref20
  doi: 10.1109/TIE.2011.2169636
– ident: ref8
  doi: 10.1109/TII.2022.3161640
– ident: ref12
  doi: 10.1016/j.ins.2003.10.011
– ident: ref24
  doi: 10.1109/72.279181
– ident: ref3
  doi: 10.1109/TIE.2013.2266086
– ident: ref2
  doi: 10.1109/TIE.2015.2492946
– ident: ref23
  doi: 10.1109/JIOT.2021.3078330
– ident: ref29
  doi: 10.1109/TAC.2017.2753460
– ident: ref31
  doi: 10.1016/j.jprocont.2020.05.009
– ident: ref22
  doi: 10.1016/j.knosys.2019.105006
– ident: ref6
  doi: 10.1016/j.jprocont.2017.02.014
– ident: ref1
  doi: 10.1109/TIE.2017.2779442
SSID ssj0014515
Score 2.619821
Snippet Modern industrial processes often operate under different modes, which brings challenges to model predictive control (MPC). Recently, most MPC related methods...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Behavioral sciences
Control methods
Deep learning
Feasibility studies
long short-term memory network
Mathematical models
model predictive control
multimode process
Optimization
Prediction models
Predictive control
Predictive models
Process controls
Stability analysis
Switches
Switching
Title LSTM-MPC: A Deep Learning Based Predictive Control Method for Multimode Process Control
URI https://ieeexplore.ieee.org/document/9994755
https://www.proquest.com/docview/2811730506
Volume 70
WOSCitedRecordID wos000986714600072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Me_DXF6ZQcvAh2a9O0SbzNuaHgxsCJu5WmSUSQbeyHf79J2hVFEbz18ALlvfR9L3353gdwSVMcMelov1x5JCQmD2pFPKFNrS9Dg2Apc2ITdDhkkwkfVeC65MIopdzlM9Wyj66XL2fZ2v4qa5tihtAoqkKV0jjnapUdAxLlagXYTow1h75NS9Ln7fFDzxwEMW6ZzWvKlfAbBDlNlR-J2KFLf-9_77UPu0UViTp52A-goqaHsPNltmAdXh6fxgNvMOreoA66U2qOilGqr-jWIJdEo4Xt0dhsh7r5fXU0cHLSyNSxyBFzrUwOKqgEG6MjeO73xt17r1BR8DLMg5UXCsFkZmCIZQynkhEtSCT9lPkqCiOaMhFkLMW-1L4vSBxTLFODnFpTHgvNg_AYatPZVJ0ASjVRIQ9VQIQkBvIY5pGOpYxNXSgpDxrQ3jg2yYoR41bp4j1xRw2fJyYUiQ1FUoSiAVflink-XuMP27p1fWlXeL0BzU3skuL7WybY8mdNKvPj099XncG2FY7PWYVNqK0Wa3UOW9nH6m25uHBb6xPOBsmi
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfk1xfubBF8FuaZq0iW86NyauY2BF30rbJCLIJnP695uk3VAUwbc-XKDcpfe79PK7H8BplBHGpaP9CuXRgJo8qBX1cm1qfRkYBMu4E5uIBgP--CiGNTifc2GUUu7ymWraR9fLl-Pi3f4qa5lihkaMLcASo5Tgkq017xlQVuoVEDsz1hz7Zk1JLFrJTcccBQlpmu1rCpbgGwg5VZUfqdjhS3fjf2-2CetVHYkuy8BvQU2NtmHty3TBOjz075LYi4ftC3SJrpV6RdUw1Sd0ZbBLouHEdmlsvkPt8sY6ip2gNDKVLHLUXCuUgyoywcxoB-67naTd8yodBa8gwp96QZ5zWRgg4gUnmeRU55RJnHGsWMCijOd-wTOCpcY4p2EYEZkZ7NQ6EmGuhR_swuJoPFJ7gDJNVSAC5dNcUgN6nAimQylDUxnKSPgNaM0cmxbVkHGrdfGSusMGFqkJRWpDkVahaMDZfMVrOWDjD9u6df3crvJ6Aw5nsUurL_AtJZZBa5IZDvd_X3UCK70k7qf9m8HtAaxaGfmSY3gIi9PJuzqC5eJj-vw2OXbb7BN21Mzp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSTM-MPC%3A+A+Deep+Learning+Based+Predictive+Control+Method+for+Multimode+Process+Control&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Huang%2C+Keke&rft.au=Wei%2C+Ke&rft.au=Li%2C+Fanbiao&rft.au=Yang%2C+Chunhua&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0278-0046&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIE.2022.3229323&rft.externalDocID=9994755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon