LSTM-MPC: A Deep Learning Based Predictive Control Method for Multimode Process Control
Modern industrial processes often operate under different modes, which brings challenges to model predictive control (MPC). Recently, most MPC related methods would establish prediction models independently for different modes, which results in their control effect highly relying on switching strate...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial electronics (1982) Ročník 70; číslo 11; s. 1 - 10 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0278-0046, 1557-9948 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Modern industrial processes often operate under different modes, which brings challenges to model predictive control (MPC). Recently, most MPC related methods would establish prediction models independently for different modes, which results in their control effect highly relying on switching strategies. Inspired by the powerful representation capabilities of deep learning, this paper proposed a deep learning based MPC method. Specifically, the LSTM network is applied to predict behaviours of controlled system, which can automatically match different operation modes without switching strategy. Then combined with MPC framework, an adaptive gradient descent method is introduced to handle optimization problem and its constraints. In addition, stability and feasibility analysis have been conducted from the aspect of theory to ensure practical application of the proposed method. Experiments on a numerical simulation process and an industrial process platform show the strength and reliability of the proposed method, which reduces the overshoot by about 10<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> compared to common learning-based MPC methods and improves the control accuracy effectively. |
|---|---|
| AbstractList | Modern industrial processes often operate under different modes, which brings challenges to model predictive control (MPC). Recently, most MPC related methods would establish prediction models independently for different modes, which results in their control effect highly relying on switching strategies. Inspired by the powerful representation capabilities of deep learning, this paper proposed a deep learning based MPC method. Specifically, the LSTM network is applied to predict behaviours of controlled system, which can automatically match different operation modes without switching strategy. Then combined with MPC framework, an adaptive gradient descent method is introduced to handle optimization problem and its constraints. In addition, stability and feasibility analysis have been conducted from the aspect of theory to ensure practical application of the proposed method. Experiments on a numerical simulation process and an industrial process platform show the strength and reliability of the proposed method, which reduces the overshoot by about 10<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> compared to common learning-based MPC methods and improves the control accuracy effectively. Modern industrial processes often operate under different modes, which brings challenges to model predictive control (MPC). Recently, most MPC related methods would establish prediction models independently for different modes, which results in their control effect highly relying on switching strategies. Inspired by the powerful representation capabilities of deep learning, this article proposed a deep learning based MPC method. Specifically, the LSTM network is applied to predict behaviors of controlled system, which can automatically match different operation modes without switching strategy. Then combined with MPC framework, an adaptive gradient descent method is introduced to handle optimization problem and its constraints. In addition, stability and feasibility analysis have been conducted from the aspect of theory to ensure practical application of the proposed method. Experiments on a numerical simulation process and an industrial process platform show the strength and reliability of the proposed method, which reduces the overshoot by about 10[Formula Omitted] compared to common learning-based MPC methods and improves the control accuracy effectively. |
| Author | Gui, Weihua Huang, Keke Wei, Ke Li, Fanbiao Yang, Chunhua |
| Author_xml | – sequence: 1 givenname: Keke orcidid: 0000-0003-3553-3424 surname: Huang fullname: Huang, Keke organization: School of Automation, Central South University, Changsha, China – sequence: 2 givenname: Ke surname: Wei fullname: Wei, Ke organization: School of Automation, Central South University, Changsha, China – sequence: 3 givenname: Fanbiao surname: Li fullname: Li, Fanbiao organization: School of Automation, Central South University, Changsha, China – sequence: 4 givenname: Chunhua orcidid: 0000-0002-3770-9887 surname: Yang fullname: Yang, Chunhua organization: School of Automation, Central South University, Changsha, China – sequence: 5 givenname: Weihua surname: Gui fullname: Gui, Weihua organization: School of Automation, Central South University, Changsha, China |
| BookMark | eNp9kTFPwzAQRi0EEm1hR2KxxJxyduLEYSulQKVGVKKIMXLsC7hq42KnSPx7UrUwMDDd8r37dO_65LhxDRJywWDIGOTXi-lkyIHzYcx5HvP4iPSYEFmU54k8Jj3gmYwAkvSU9ENYArBEMNEjr7PnRREV8_ENHdE7xA2dofKNbd7orQpo6Nyjsbq1n0jHrmm9W9EC23dnaO08Lbar1q6dwS7nNIbwEzojJ7VaBTw_zAF5uZ8sxo_R7OlhOh7NIs1z1kZxVUmjGZdSS66MTOoqEQaUBBSxyJSsmJaKg6kBqiRNM26URqzrLE-rOmfxgFzt9268-9hiaMul2_qmqyy5ZCyLQUDapWCf0t6F4LEuN96ulf8qGZQ7fWWnr9zpKw_6OiT9g2jbqtbuzlN29R94uQctIv725N0fMiHib-0ifY0 |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1016_j_apm_2025_116348 crossref_primary_10_1016_j_energy_2025_135701 crossref_primary_10_29109_gujsc_1726037 crossref_primary_10_1016_j_asoc_2025_113674 crossref_primary_10_1016_j_apenergy_2024_124164 crossref_primary_10_1038_s41598_025_01290_x crossref_primary_10_3390_electronics13214241 crossref_primary_10_1016_j_neucom_2025_129712 crossref_primary_10_1109_ACCESS_2025_3554168 crossref_primary_10_1109_TCST_2023_3279623 crossref_primary_10_1016_j_isatra_2024_04_019 crossref_primary_10_1109_TASE_2024_3524472 crossref_primary_10_1016_j_chaos_2023_113739 crossref_primary_10_3390_wevj16090524 crossref_primary_10_3390_app151910329 crossref_primary_10_1109_JSEN_2024_3401678 crossref_primary_10_1007_s10489_023_05157_4 crossref_primary_10_1109_TIA_2024_3351959 crossref_primary_10_1007_s42835_024_01982_w crossref_primary_10_3390_s25072014 crossref_primary_10_1080_00207179_2024_2366435 crossref_primary_10_1016_j_trd_2025_104896 crossref_primary_10_1007_s10845_024_02438_8 crossref_primary_10_1109_JAS_2024_124212 crossref_primary_10_1115_1_4067768 crossref_primary_10_1109_TII_2024_3393503 crossref_primary_10_3390_wevj16040206 crossref_primary_10_1109_TITS_2024_3421626 crossref_primary_10_1115_1_4069104 crossref_primary_10_1109_JSYST_2024_3406800 crossref_primary_10_1109_TASE_2025_3529124 crossref_primary_10_1007_s00521_024_09710_1 crossref_primary_10_1016_j_neucom_2025_129418 crossref_primary_10_1109_JAS_2024_124929 crossref_primary_10_3390_electronics14102000 crossref_primary_10_1016_j_neucom_2025_131048 crossref_primary_10_1109_TIA_2023_3335033 crossref_primary_10_3390_a16080387 crossref_primary_10_1007_s10489_023_05234_8 crossref_primary_10_1088_1361_6501_ad8947 crossref_primary_10_1177_01423312241262079 crossref_primary_10_1109_TIE_2023_3323745 crossref_primary_10_1007_s11071_024_10342_2 crossref_primary_10_1109_TII_2025_3574400 crossref_primary_10_1080_02626667_2025_2464949 crossref_primary_10_1109_TCSII_2025_3557419 crossref_primary_10_1016_j_applthermaleng_2025_126202 crossref_primary_10_1109_TII_2025_3567401 crossref_primary_10_1109_TSMC_2023_3341031 crossref_primary_10_1109_TII_2024_3438234 crossref_primary_10_3390_a18080508 |
| Cites_doi | 10.1016/j.arcontrol.2004.01.004 10.1016/j.neunet.2019.09.035 10.1016/j.conengprac.2020.104319 10.1016/j.powtec.2019.10.065 10.1109/TNNLS.2013.2261574 10.1109/TNNLS.2016.2561702 10.1109/TIE.2020.2979560 10.1016/S1474-6670(17)58026-X 10.1109/TNNLS.2015.2465174 10.1016/j.oceaneng.2018.06.068 10.1109/TIE.2019.2903743 10.1016/j.conengprac.2010.05.012 10.1109/TNNLS.2020.3015869 10.1002/aic.16729 10.1109/TII.2020.2969729 10.1007/s10489-021-02770-z 10.1109/TIE.2013.2261039 10.1016/j.conengprac.2015.08.009 10.1016/S0005-1098(99)00113-2 10.1109/TCYB.2022.3178878 10.1109/TIE.2011.2169636 10.1109/TII.2022.3161640 10.1016/j.ins.2003.10.011 10.1109/72.279181 10.1109/TIE.2013.2266086 10.1109/TIE.2015.2492946 10.1109/JIOT.2021.3078330 10.1109/TAC.2017.2753460 10.1016/j.jprocont.2020.05.009 10.1016/j.knosys.2019.105006 10.1016/j.jprocont.2017.02.014 10.1109/TIE.2017.2779442 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2022.3229323 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 10 |
| ExternalDocumentID | 10_1109_TIE_2022_3229323 9994755 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Major Key Project of Peng Cheng Laboratory (PCL) grantid: PCL2021A09 – fundername: National Natural Science Foundation of China grantid: 62073340; 61860206014 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2022YFB3304900; 2019YFB1705300 – fundername: Science and Technology Innovation Program of Hunan Province grantid: 2022JJ10083; 2021RC3018; 2021RC4054 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ 5VS 9M8 AAYXX ACKIV AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IBMZZ ICLAB IFJZH VH1 VJK 7SP 8FD AARMG ABAZT L7M |
| ID | FETCH-LOGICAL-c291t-3bb8dc1288c82ad84fb45d0a80e5357a8b1c8a20df00b46672daceeff796bf913 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986714600072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:12:43 EDT 2025 Tue Nov 18 22:24:33 EST 2025 Sat Nov 29 01:31:59 EST 2025 Tue Nov 25 14:44:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-3bb8dc1288c82ad84fb45d0a80e5357a8b1c8a20df00b46672daceeff796bf913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3553-3424 0000-0002-3770-9887 |
| PQID | 2811730506 |
| PQPubID | 85464 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TIE_2022_3229323 crossref_citationtrail_10_1109_TIE_2022_3229323 proquest_journals_2811730506 ieee_primary_9994755 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref31 ref30 huang (ref21) 2021; 52 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 han (ref27) 2013; 24 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 tang (ref13) 0; 29 |
| References_xml | – ident: ref11 doi: 10.1016/j.arcontrol.2004.01.004 – ident: ref16 doi: 10.1016/j.neunet.2019.09.035 – ident: ref26 doi: 10.1016/j.conengprac.2020.104319 – ident: ref25 doi: 10.1016/j.powtec.2019.10.065 – volume: 24 start-page: 1425 year: 2013 ident: ref27 article-title: Real-time model predictive control using a self-organizing neural network publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2261574 – ident: ref32 doi: 10.1109/TNNLS.2016.2561702 – ident: ref17 doi: 10.1109/TIE.2020.2979560 – ident: ref10 doi: 10.1016/S1474-6670(17)58026-X – ident: ref18 doi: 10.1109/TNNLS.2015.2465174 – ident: ref14 doi: 10.1016/j.oceaneng.2018.06.068 – ident: ref9 doi: 10.1109/TIE.2019.2903743 – ident: ref33 doi: 10.1016/j.conengprac.2010.05.012 – ident: ref15 doi: 10.1109/TNNLS.2020.3015869 – ident: ref28 doi: 10.1002/aic.16729 – ident: ref19 doi: 10.1109/TII.2020.2969729 – volume: 52 start-page: 14773 year: 2021 ident: ref21 article-title: A multi-mode traffic flow prediction method with clustering based attention convolution LSTM publication-title: Appl Intell doi: 10.1007/s10489-021-02770-z – volume: 29 start-page: 622 year: 0 ident: ref13 article-title: Multi-model MPC for nonlinear systems: Case study of a complex PH neutralization process publication-title: Proc 21st Eur Symp Comput Aided Process Eng – ident: ref4 doi: 10.1109/TIE.2013.2261039 – ident: ref5 doi: 10.1016/j.conengprac.2015.08.009 – ident: ref30 doi: 10.1016/S0005-1098(99)00113-2 – ident: ref7 doi: 10.1109/TCYB.2022.3178878 – ident: ref20 doi: 10.1109/TIE.2011.2169636 – ident: ref8 doi: 10.1109/TII.2022.3161640 – ident: ref12 doi: 10.1016/j.ins.2003.10.011 – ident: ref24 doi: 10.1109/72.279181 – ident: ref3 doi: 10.1109/TIE.2013.2266086 – ident: ref2 doi: 10.1109/TIE.2015.2492946 – ident: ref23 doi: 10.1109/JIOT.2021.3078330 – ident: ref29 doi: 10.1109/TAC.2017.2753460 – ident: ref31 doi: 10.1016/j.jprocont.2020.05.009 – ident: ref22 doi: 10.1016/j.knosys.2019.105006 – ident: ref6 doi: 10.1016/j.jprocont.2017.02.014 – ident: ref1 doi: 10.1109/TIE.2017.2779442 |
| SSID | ssj0014515 |
| Score | 2.619821 |
| Snippet | Modern industrial processes often operate under different modes, which brings challenges to model predictive control (MPC). Recently, most MPC related methods... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Behavioral sciences Control methods Deep learning Feasibility studies long short-term memory network Mathematical models model predictive control multimode process Optimization Prediction models Predictive control Predictive models Process controls Stability analysis Switches Switching |
| Title | LSTM-MPC: A Deep Learning Based Predictive Control Method for Multimode Process Control |
| URI | https://ieeexplore.ieee.org/document/9994755 https://www.proquest.com/docview/2811730506 |
| Volume | 70 |
| WOSCitedRecordID | wos000986714600072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Me_DXF6ZQcvAh2a9O0SbzNuaHgxsCJu5WmSUSQbeyHf79J2hVFEbz18ALlvfR9L3353gdwSVMcMelov1x5JCQmD2pFPKFNrS9Dg2Apc2ITdDhkkwkfVeC65MIopdzlM9Wyj66XL2fZ2v4qa5tihtAoqkKV0jjnapUdAxLlagXYTow1h75NS9Ln7fFDzxwEMW6ZzWvKlfAbBDlNlR-J2KFLf-9_77UPu0UViTp52A-goqaHsPNltmAdXh6fxgNvMOreoA66U2qOilGqr-jWIJdEo4Xt0dhsh7r5fXU0cHLSyNSxyBFzrUwOKqgEG6MjeO73xt17r1BR8DLMg5UXCsFkZmCIZQynkhEtSCT9lPkqCiOaMhFkLMW-1L4vSBxTLFODnFpTHgvNg_AYatPZVJ0ASjVRIQ9VQIQkBvIY5pGOpYxNXSgpDxrQ3jg2yYoR41bp4j1xRw2fJyYUiQ1FUoSiAVflink-XuMP27p1fWlXeL0BzU3skuL7WybY8mdNKvPj099XncG2FY7PWYVNqK0Wa3UOW9nH6m25uHBb6xPOBsmi |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfk1xfubBF8FuaZq0iW86NyauY2BF30rbJCLIJnP695uk3VAUwbc-XKDcpfe79PK7H8BplBHGpaP9CuXRgJo8qBX1cm1qfRkYBMu4E5uIBgP--CiGNTifc2GUUu7ymWraR9fLl-Pi3f4qa5lihkaMLcASo5Tgkq017xlQVuoVEDsz1hz7Zk1JLFrJTcccBQlpmu1rCpbgGwg5VZUfqdjhS3fjf2-2CetVHYkuy8BvQU2NtmHty3TBOjz075LYi4ftC3SJrpV6RdUw1Sd0ZbBLouHEdmlsvkPt8sY6ip2gNDKVLHLUXCuUgyoywcxoB-67naTd8yodBa8gwp96QZ5zWRgg4gUnmeRU55RJnHGsWMCijOd-wTOCpcY4p2EYEZkZ7NQ6EmGuhR_swuJoPFJ7gDJNVSAC5dNcUgN6nAimQylDUxnKSPgNaM0cmxbVkHGrdfGSusMGFqkJRWpDkVahaMDZfMVrOWDjD9u6df3crvJ6Aw5nsUurL_AtJZZBa5IZDvd_X3UCK70k7qf9m8HtAaxaGfmSY3gIi9PJuzqC5eJj-vw2OXbb7BN21Mzp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSTM-MPC%3A+A+Deep+Learning+Based+Predictive+Control+Method+for+Multimode+Process+Control&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Huang%2C+Keke&rft.au=Wei%2C+Ke&rft.au=Li%2C+Fanbiao&rft.au=Yang%2C+Chunhua&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0278-0046&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIE.2022.3229323&rft.externalDocID=9994755 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |