Bridging the Model-Reality Gap With Lipschitz Network Adaptation

As robots venture into the real world, they are subject to unmodeled dynamics and disturbances. Traditional model-based control approaches have been proven successful in relatively static and known operating environments. However, when an accurate model of the robot is not available, model-based des...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 7; číslo 1; s. 642 - 649
Hlavní autoři: Zhou, Siqi, Pereida, Karime, Zhao, Wenda, Schoellig, Angela P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As robots venture into the real world, they are subject to unmodeled dynamics and disturbances. Traditional model-based control approaches have been proven successful in relatively static and known operating environments. However, when an accurate model of the robot is not available, model-based design can lead to suboptimal and even unsafe behaviour. In this work, we propose a method that bridges the model-reality gap and enables the application of model-based approaches even if dynamic uncertainties are present. In particular, we present a learning-based model reference adaptation approach that makes a robot system, with possibly uncertain dynamics, behave as a predefined reference model. In turn, the reference model can be used for model-based controller design. In contrast to typical model reference adaptation control approaches, we leverage the representative power of neural networks to capture highly nonlinear dynamics uncertainties and guarantee stability by encoding a certifying Lipschitz condition in the architectural design of a special type of neural network called the Lipschitz network. Our approach applies to a general class of nonlinear control-affine systems even when our prior knowledge about the true robot system is limited. We demonstrate our approach in flying inverted pendulum experiments, where an off-the-shelf quadrotor is challenged to balance an inverted pendulum while hovering or tracking circular trajectories.
AbstractList As robots venture into the real world, they are subject to unmodeled dynamics and disturbances. Traditional model-based control approaches have been proven successful in relatively static and known operating environments. However, when an accurate model of the robot is not available, model-based design can lead to suboptimal and even unsafe behaviour. In this work, we propose a method that bridges the model-reality gap and enables the application of model-based approaches even if dynamic uncertainties are present. In particular, we present a learning-based model reference adaptation approach that makes a robot system, with possibly uncertain dynamics, behave as a predefined reference model. In turn, the reference model can be used for model-based controller design. In contrast to typical model reference adaptation control approaches, we leverage the representative power of neural networks to capture highly nonlinear dynamics uncertainties and guarantee stability by encoding a certifying Lipschitz condition in the architectural design of a special type of neural network called the Lipschitz network. Our approach applies to a general class of nonlinear control-affine systems even when our prior knowledge about the true robot system is limited. We demonstrate our approach in flying inverted pendulum experiments, where an off-the-shelf quadrotor is challenged to balance an inverted pendulum while hovering or tracking circular trajectories.
Author Pereida, Karime
Zhao, Wenda
Schoellig, Angela P.
Zhou, Siqi
Author_xml – sequence: 1
  givenname: Siqi
  orcidid: 0000-0001-7240-546X
  surname: Zhou
  fullname: Zhou, Siqi
  email: siqi.zhou@robotics.utias.utoronto.ca
  organization: Dynamic Systems Lab (www.dynsyslab.org), Institute for Aerospace Studies, University of Toronto, Toronto, Canada
– sequence: 2
  givenname: Karime
  orcidid: 0000-0002-8576-2164
  surname: Pereida
  fullname: Pereida, Karime
  email: karime.pereida@robotics.utias. utoronto.ca
  organization: Dynamic Systems Lab (www.dynsyslab.org), Institute for Aerospace Studies, University of Toronto, Toronto, Canada
– sequence: 3
  givenname: Wenda
  orcidid: 0000-0002-4288-0582
  surname: Zhao
  fullname: Zhao, Wenda
  email: wenda.zhao@robotics.utias.utoronto.ca
  organization: Dynamic Systems Lab (www.dynsyslab.org), Institute for Aerospace Studies, University of Toronto, Toronto, Canada
– sequence: 4
  givenname: Angela P.
  orcidid: 0000-0003-4012-4668
  surname: Schoellig
  fullname: Schoellig, Angela P.
  email: schoellig@utias.utoronto. ca
  organization: Dynamic Systems Lab (www.dynsyslab.org), Institute for Aerospace Studies, University of Toronto, Toronto, Canada
BookMark eNp9kMFLwzAUh4NMcM7dBS8Fz50vSZM0N6foFKbCUDyGNE23zNrWNEPmX29Hh4gH3-W9w-977_Edo0FVVxahUwwTjEFezBfTCQGCJxRTzGV6gIaEChFTwfng13yExm27BgDMiKCSDdHllXf50lXLKKxs9FDntowXVpcubKOZbqJXF1bR3DWtWbnwFT3a8Fn7t2ia6ybo4OrqBB0WumzteN9H6OX25vn6Lp4_ze6vp_PYEIlDTFOa2SLRxgrDMkmSQkhGIe9Kc0lyIUiCDSSFSUBzjZm0Sa4zoFoQktOMjtB5v7fx9cfGtkGt642vupOKcEgZ4ymDLsX7lPF123pbKOP6P4PXrlQY1E6Y6oSpnTC1F9aB8AdsvHvXfvsfctYjzlr7E5eckgQY_QbNL3bC
CODEN IRALC6
CitedBy_id crossref_primary_10_3390_app122010277
crossref_primary_10_1109_TRO_2024_3381554
crossref_primary_10_1007_s10723_023_09663_0
crossref_primary_10_1109_LRA_2024_3368969
crossref_primary_10_1016_j_ifacol_2023_10_053
Cites_doi 10.1002/acs.2397
10.1016/0005-1098(94)00161-B
10.1049/ip-cta:19951613
10.1177/0278364920953902
10.1002/rob.21587
10.1109/CDC40024.2019.9029173
10.1109/CDC.2007.4434184
10.1109/LRA.2019.2901638
10.23919/ECC.2019.8796140
10.1121/1.399905
10.1109/ICRA40945.2020.9196744
10.1109/TIE.2016.2552151
10.1109/9.384214
10.1207/s15516709cog1603_1
10.1109/LRA.2018.2847405
10.1109/ICRA.2019.8794351
10.1109/ICRA.2011.5980244
10.1016/j.jprocont.2009.11.007
10.1137/1.9780898719376
10.1146/annurev-control-042920-020211
10.1109/ICRA.2018.8460528
10.1109/TNNLS.2014.2319052
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2021.3131698
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 649
ExternalDocumentID 10_1109_LRA_2021_3131698
9632405
Genre orig-research
GrantInformation_xml – fundername: CIFAR AI Chairs Program
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
– fundername: Canada Research Chairs
  funderid: 10.13039/501100001804
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-383bef4ace7c5b924f79530dddda692d77241c04fc40a6a159e4dab03a722d3b3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728922700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Jun 29 15:19:55 EDT 2025
Tue Nov 18 22:43:58 EST 2025
Sat Nov 29 06:03:13 EST 2025
Wed Aug 27 05:07:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-383bef4ace7c5b924f79530dddda692d77241c04fc40a6a159e4dab03a722d3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8576-2164
0000-0003-4012-4668
0000-0001-7240-546X
0000-0002-4288-0582
PQID 2608556850
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2021_3131698
ieee_primary_9632405
crossref_citationtrail_10_1109_LRA_2021_3131698
proquest_journals_2608556850
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
Zhou (ref2) 1998
ref10
ref1
ref17
ref16
Hovakimyan (ref11) 2010
ref19
ref18
Fazlyab (ref20) 2019
ref24
ref26
ref25
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
Anil (ref6) 2019
ref5
Khalil (ref23) 2002
Xie (ref15) 2021
References_xml – ident: ref4
  doi: 10.1002/acs.2397
– ident: ref25
  doi: 10.1016/0005-1098(94)00161-B
– volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  year: 2021
  ident: ref15
  article-title: Deep reinforcement learning amidst lifelong non-stationarity
– ident: ref18
  doi: 10.1049/ip-cta:19951613
– ident: ref14
  doi: 10.1177/0278364920953902
– volume-title: Essentials of Robust Control
  year: 1998
  ident: ref2
– start-page: 11427
  volume-title: Proc. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref20
  article-title: Efficient and accurate estimation of lipschitz constants for deep neural networks
– ident: ref12
  doi: 10.1002/rob.21587
– ident: ref19
  doi: 10.1109/CDC40024.2019.9029173
– ident: ref24
  doi: 10.1109/CDC.2007.4434184
– ident: ref13
  doi: 10.1109/LRA.2019.2901638
– ident: ref22
  doi: 10.23919/ECC.2019.8796140
– ident: ref3
  doi: 10.1121/1.399905
– ident: ref27
  doi: 10.1109/ICRA40945.2020.9196744
– ident: ref7
  doi: 10.1109/TIE.2016.2552151
– ident: ref17
  doi: 10.1109/9.384214
– ident: ref16
  doi: 10.1207/s15516709cog1603_1
– ident: ref9
  doi: 10.1109/LRA.2018.2847405
– start-page: 291
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref6
  article-title: Sorting out lipschitz function approximation
– ident: ref21
  doi: 10.1109/ICRA.2019.8794351
– volume-title: Nonlinear Systems Third Edition
  year: 2002
  ident: ref23
– ident: ref26
  doi: 10.1109/ICRA.2011.5980244
– ident: ref8
  doi: 10.1016/j.jprocont.2009.11.007
– volume-title: Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation
  year: 2010
  ident: ref11
  doi: 10.1137/1.9780898719376
– ident: ref1
  doi: 10.1146/annurev-control-042920-020211
– ident: ref10
  doi: 10.1109/ICRA.2018.8460528
– ident: ref5
  doi: 10.1109/TNNLS.2014.2319052
SSID ssj0001527395
Score 2.2591887
Snippet As robots venture into the real world, they are subject to unmodeled dynamics and disturbances. Traditional model-based control approaches have been proven...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 642
SubjectTerms Adaptation
Adaptation models
Aerodynamics
Computational modeling
Control systems design
deep learning methods
Dynamic stability
Dynamical systems
Hovering
Lipschitz condition
Machine learning for robot control
Model reference adaptive control
Neural networks
Nonlinear control
Nonlinear dynamical systems
Nonlinear dynamics
Nonlinear systems
Pendulums
Predictive models
Robots
robust/adaptive control
Uncertainty
Title Bridging the Model-Reality Gap With Lipschitz Network Adaptation
URI https://ieeexplore.ieee.org/document/9632405
https://www.proquest.com/docview/2608556850
Volume 7
WOSCitedRecordID wos000728922700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQMMfBVEoVQeWJAIdZw4jjcKamEoFapAdIsc2xGVqrbqBwMDvx3bSQsIhEQmD7YUPTu5e3e-dwBnqQoybSy7R3jKvNAYWE_QIPQixoSyJcwydoXCXdbrxYMBfyjBxboWRmvtLp_pSzt0uXw1kUsbKmtyqy1uBUvLjLG8VusznmKVxDhdZSIxb3b7LcP_iG9oaeBHPP5meVwrlR__X2dUOjv_e51d2C6cR9TKd3sPSnq8D1tfJAWrcHVtK7DMEBnPDtlOZyOvr52zjW7FFD0PFy-oO5zObf7gDfXyW-CopcQ0T8ofwFOn_Xhz5xVdEjxJuL_wDMVMdRYKqZmkqaFTGeM0wMo8IuJEGfc59CUOMxliEQnjvuhQiRQHghGigjQ4hMp4MtZHgChWWFGqFBE89ImODRkzWxbHNAq0n2Y1aK4QTGQhIW47WYwSRyUwTwzmicU8KTCvwfl6xTSXz_hjbtVivJ5XwFuD-mqTkuL7mieGhcVWO43i499XncAmsYUKLlhSh8pittSnsCFfF8P5rAHl-_d2wx2gD1mQwlg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7IFNSDv6Y4f-bgRbAuTZO2uTnFqViHjIm7lTRJcTC2sU0P_vUmaTcVRbCnHBIoX9K-972X9z2Ak0wFuTaW3SM8izxqDKwnWEC9MIqEsiXMMnaFwknUasXdLn9cgLN5LYzW2l0-0-d26HL5aihfbaiszq22uBUsXWSUEr-o1vqMqFgtMc5muUjM60m7YRgg8Q0xDfyQx99sj2um8uMP7MxKc_1_L7QBa6X7iBrFfm_Cgh5sweoXUcEqXFzaGiwzRMa3Q7bXWd9ra-duoxsxQs-96QtKeqOJzSC8o1ZxDxw1lBgVaflteGped65uvbJPgicJ96eeIZmZzqmQOpIsM4QqjzgLsDKPCDlRxoGmvsQ0lxSLUBgHRlMlMhyIiBAVZMEOVAbDgd4FxLDCijGliODUJzo2dMxsWhyzMNB-ltegPkMwlaWIuO1l0U8dmcA8NZinFvO0xLwGp_MVo0JA44-5VYvxfF4Jbw0OZpuUll_YJDU8LLbqaQzv_b7qGJZvOw9Jmty17vdhhdiyBRc6OYDKdPyqD2FJvk17k_GRO0YfBg_Ebg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bridging+the+Model-Reality+Gap+With+Lipschitz+Network+Adaptation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Zhou%2C+Siqi&rft.au=Pereida%2C+Karime&rft.au=Zhao%2C+Wenda&rft.au=Schoellig%2C+Angela+P.&rft.date=2022-01-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=7&rft.issue=1&rft.spage=642&rft.epage=649&rft_id=info:doi/10.1109%2FLRA.2021.3131698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2021_3131698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon