FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data
Federated Learning (FL) is popular for communication-efficient learning from distributed data. To utilize data at different clients without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a computation then aggregation model, in which multiple local updates...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 69; s. 6055 - 6070 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!