Estimation With Fast Feature Selection in Robot Visual Navigation
We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision sys...
Gespeichert in:
| Veröffentlicht in: | IEEE robotics and automation letters Jg. 5; H. 2; S. 3572 - 3579 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision system using a camera to formulate the feature selection problem over moving finite-time horizons. We propose a scalable randomized sampling algorithm to select more informative features to obtain a certain estimation quality. We provide probabilistic performance guarantees for our method. The time-complexity of our feature selection algorithm is linear in the number of candidate features, which is practically plausible and outperforms existing greedy methods that scale quadratically with the number of candidate features. Our numerical simulations confirm that not only the execution time of our proposed method is comparably less than that of the greedy method, but also the resulting estimation quality is very close to the greedy method. |
|---|---|
| AbstractList | We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision system using a camera to formulate the feature selection problem over moving finite-time horizons. We propose a scalable randomized sampling algorithm to select more informative features to obtain a certain estimation quality. We provide probabilistic performance guarantees for our method. The time-complexity of our feature selection algorithm is linear in the number of candidate features, which is practically plausible and outperforms existing greedy methods that scale quadratically with the number of candidate features. Our numerical simulations confirm that not only the execution time of our proposed method is comparably less than that of the greedy method, but also the resulting estimation quality is very close to the greedy method. |
| Author | Motee, Nader Mousavi, Hossein K. |
| Author_xml | – sequence: 1 givenname: Hossein K. orcidid: 0000-0002-9828-2215 surname: Mousavi fullname: Mousavi, Hossein K. email: mousavi@papercept.net organization: Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA – sequence: 2 givenname: Nader orcidid: 0000-0002-0597-3659 surname: Motee fullname: Motee, Nader email: motee@papercept.net organization: Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA |
| BookMark | eNp9kEtLAzEUhYNUsNbuBTcB1615Z2ZZSqtCUaivZUjjHU0ZZ2qSEfz3pq2IuHB1w835cnLOMeo1bQMInVIyppSUF4vlZMwII2NWaqGkOEB9xrUeca1U79f5CA1jXBNCqGSal7KPJrOY_JtNvm3wk0-veG5jwnOwqQuA76AGt7vzDV62qzbhRx87W-Mb--FfdtgJOqxsHWH4PQfoYT67n16NFreX19PJYuRYSdPWvhKFYwq0KnRlWVXY_A-uhRBESktK7ZRe0bwC57S0vIJnLplkxArJLB-g8_27m9C-dxCTWbddaLKlYbxQRPJC0Kwie5ULbYwBKrMJOV_4NJSYbVcmd2W2XZnvrjKi_iDOp120FKyv_wPP9qAHgB-fMqeiBedfLEd1xw |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1109_LRA_2020_3032067 crossref_primary_10_1007_s10489_023_04754_7 crossref_primary_10_1016_j_cja_2022_08_009 crossref_primary_10_1016_j_asr_2021_07_005 crossref_primary_10_1109_TAES_2021_3122831 crossref_primary_10_3233_JIFS_189698 |
| Cites_doi | 10.1007/978-3-540-77072-5 10.1109/ICCV.2005.29 10.1109/TRO.2005.861480 10.1109/ICCV.1999.790419 10.1109/TRO.2016.2623344 10.1109/TRO.2007.895070 10.1109/TCNS.2017.2691463 10.1137/080734029 10.1145/2492007.2492029 10.1109/TAC.2014.2314223 10.1177/0278364911406562 10.1109/IROS.2013.6696728 10.1016/j.ifacol.2018.12.070 10.1109/ROBOT.2009.5152207 10.1109/ACC.2016.7524914 10.1126/scirobotics.aar7650 10.1109/TRO.2018.2872402 10.1007/BF01212364 10.1177/0278364904045479 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2020.2974654 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 3579 |
| ExternalDocumentID | 10_1109_LRA_2020_2974654 9001183 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: ECCS-1454022 funderid: 10.13039/100000001 – fundername: Air Force Office of Scientific Research grantid: FA9550-19-1-0004 funderid: 10.13039/100000181 – fundername: ONR grantid: N00014-19-1-2478 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-376f48c26e7687fa2f8a00137444055a097c67b1013ecc75a3fed352520a452a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524329100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Sun Jun 29 12:29:02 EDT 2025 Tue Nov 18 22:36:03 EST 2025 Sat Nov 29 06:03:06 EST 2025 Wed Aug 27 02:35:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-376f48c26e7687fa2f8a00137444055a097c67b1013ecc75a3fed352520a452a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0597-3659 0000-0002-9828-2215 |
| PQID | 2386053841 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_LRA_2020_2974654 crossref_citationtrail_10_1109_LRA_2020_2974654 ieee_primary_9001183 proquest_journals_2386053841 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref20 ref11 ref22 ref10 thrun (ref2) 2005 ref21 gorbenko (ref8) 2012; 6 ref17 ref16 ref19 ref18 ref7 mousavi (ref13) 2019 ref9 ref4 ref3 ref6 ref5 yang (ref1) 2018; 3 |
| References_xml | – ident: ref6 doi: 10.1007/978-3-540-77072-5 – ident: ref11 doi: 10.1109/ICCV.2005.29 – ident: ref4 doi: 10.1109/TRO.2005.861480 – ident: ref3 doi: 10.1109/ICCV.1999.790419 – ident: ref10 doi: 10.1109/TRO.2016.2623344 – ident: ref5 doi: 10.1109/TRO.2007.895070 – ident: ref22 doi: 10.1109/TCNS.2017.2691463 – ident: ref17 doi: 10.1137/080734029 – year: 2005 ident: ref2 publication-title: Probabilistic Robotics – ident: ref18 doi: 10.1145/2492007.2492029 – ident: ref20 doi: 10.1109/TAC.2014.2314223 – ident: ref15 doi: 10.1177/0278364911406562 – ident: ref9 doi: 10.1109/IROS.2013.6696728 – ident: ref19 doi: 10.1016/j.ifacol.2018.12.070 – ident: ref7 doi: 10.1109/ROBOT.2009.5152207 – ident: ref21 doi: 10.1109/ACC.2016.7524914 – volume: 6 start-page: 4729 year: 2012 ident: ref8 article-title: The problem of selection of a minimal set of visual landmarks publication-title: Appl Math Sci – volume: 3 year: 2018 ident: ref1 article-title: The grand challenges of science robotics publication-title: Robotics Science doi: 10.1126/scirobotics.aar7650 – ident: ref12 doi: 10.1109/TRO.2018.2872402 – ident: ref16 doi: 10.1007/BF01212364 – year: 2019 ident: ref13 article-title: Estimation with fast landmark selection in robot visual navigation – ident: ref14 doi: 10.1177/0278364904045479 |
| SSID | ssj0001527395 |
| Score | 2.1640604 |
| Snippet | We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3572 |
| SubjectTerms | Algorithms Autonomous agents Computer simulation Covariance matrices Feature extraction localization Mathematical models Navigation Robot localization Robots Vision systems visual-based navigation |
| Title | Estimation With Fast Feature Selection in Robot Visual Navigation |
| URI | https://ieeexplore.ieee.org/document/9001183 https://www.proquest.com/docview/2386053841 |
| Volume | 5 |
| WOSCitedRecordID | wos000524329100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Me_DXF6ZQevAh2a9M0aY5DNjzMIVPnbiVNUyxIK2u3o3-7SdpNRRG8BZqE8KVJvveS9z2AS9-JE5xwaXNBlIHiYWJHggibuoIglwiPGy292ZhOJsF8zu4bcL2JhZFSmsdnsqeL5i4_zsVSu8r6zCiWeU1oUkqrWK1Pf4pWEmP--ibSYf3xdKDsP-T0kOLMxMffTh6TSuXH_msOldHe_4azD7s1ebQG1WwfQENmh7DzRVKwDYOhWrNVOKL1nJYv1ogXpaWJ3nIhrQeT9UZ_SzNrmkd5ac3SYqn6nPCVEdvIsyN4Gg0fb27tOk2CLRBzS71FJDgQiEhlOtCEoyTgRi4UY8XGfO4wKgiNXO3wFIL63EtkrFVQkcOxj7h3DK0sz-QJWBRHAZZRzF0ZY8wl51IEAUt8wbEkIu5Afw1hKGoNcZ3K4jU0toTDQgV6qEEPa9A7cLVp8VbpZ_xRt61B3tSr8e1Adz1LYb3AilAxDWWIeQF2T39vdQbbuu_qkU0XWuViKc9hS6zKtFhcQPPufXhh_qAPMPfDNA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFH6Z00Q9-Gsap1M5eDGRDUopcFyMy4y4mDnnbqSUEkkMmAH7-20LmxqNiTeStpR8pe33Xvu-B3BpG1GMY8p1yogwUCxM9JARpjsmI8gkzKJKS2_qO6ORO5t5jw24XsXCcM7V5TPelY_qLD_KWCldZT1PKZZZa7BuY4zMKlrr06MitcQ8e3kWaXg9f9wXFiAyukiwZmLjb3uPSqbyYwVW28pg938ftAc7NX3U-tV470ODpwew_UVUsAX9WzFrq4BE7SUpXrUBzQtNUr1yzrUnlfdGliWpNs7CrNCmSV6Kd47oQsltZOkhPA9uJzdDvU6UoDPkmYVcJGLsMkS4MB6cmKLYpUowFGPBx2xqeA4jTmhKlydjjk2tmEdSBxUZFNuIWkfQTLOUH4Pm4NDFPIyoySOMKaeUM9f1YptRzAmL2tBbQhiwWkVcJrN4C5Q1YXiBAD2QoAc16G24WrV4rxQ0_qjbkiCv6tX4tqGzHKWgnmJ5ILiGMMUsF5snv7e6gM3h5MEP_LvR_SlsyX6qKzcdaBbzkp_BBlsUST4_V__RB-PAxUo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+With+Fast+Feature+Selection+in+Robot+Visual+Navigation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Mousavi%2C+Hossein+K.&rft.au=Motee%2C+Nader&rft.date=2020-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=3572&rft.epage=3579&rft_id=info:doi/10.1109%2FLRA.2020.2974654&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2020_2974654 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |