Estimation With Fast Feature Selection in Robot Visual Navigation

We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 5; H. 2; S. 3572 - 3579
Hauptverfasser: Mousavi, Hossein K., Motee, Nader
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision system using a camera to formulate the feature selection problem over moving finite-time horizons. We propose a scalable randomized sampling algorithm to select more informative features to obtain a certain estimation quality. We provide probabilistic performance guarantees for our method. The time-complexity of our feature selection algorithm is linear in the number of candidate features, which is practically plausible and outperforms existing greedy methods that scale quadratically with the number of candidate features. Our numerical simulations confirm that not only the execution time of our proposed method is comparably less than that of the greedy method, but also the resulting estimation quality is very close to the greedy method.
AbstractList We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features (landmarks) appear linearly in the information matrix of the corresponding estimation problem. We utilize standard models for motion and vision system using a camera to formulate the feature selection problem over moving finite-time horizons. We propose a scalable randomized sampling algorithm to select more informative features to obtain a certain estimation quality. We provide probabilistic performance guarantees for our method. The time-complexity of our feature selection algorithm is linear in the number of candidate features, which is practically plausible and outperforms existing greedy methods that scale quadratically with the number of candidate features. Our numerical simulations confirm that not only the execution time of our proposed method is comparably less than that of the greedy method, but also the resulting estimation quality is very close to the greedy method.
Author Motee, Nader
Mousavi, Hossein K.
Author_xml – sequence: 1
  givenname: Hossein K.
  orcidid: 0000-0002-9828-2215
  surname: Mousavi
  fullname: Mousavi, Hossein K.
  email: mousavi@papercept.net
  organization: Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
– sequence: 2
  givenname: Nader
  orcidid: 0000-0002-0597-3659
  surname: Motee
  fullname: Motee, Nader
  email: motee@papercept.net
  organization: Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
BookMark eNp9kEtLAzEUhYNUsNbuBTcB1615Z2ZZSqtCUaivZUjjHU0ZZ2qSEfz3pq2IuHB1w835cnLOMeo1bQMInVIyppSUF4vlZMwII2NWaqGkOEB9xrUeca1U79f5CA1jXBNCqGSal7KPJrOY_JtNvm3wk0-veG5jwnOwqQuA76AGt7vzDV62qzbhRx87W-Mb--FfdtgJOqxsHWH4PQfoYT67n16NFreX19PJYuRYSdPWvhKFYwq0KnRlWVXY_A-uhRBESktK7ZRe0bwC57S0vIJnLplkxArJLB-g8_27m9C-dxCTWbddaLKlYbxQRPJC0Kwie5ULbYwBKrMJOV_4NJSYbVcmd2W2XZnvrjKi_iDOp120FKyv_wPP9qAHgB-fMqeiBedfLEd1xw
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_LRA_2020_3032067
crossref_primary_10_1007_s10489_023_04754_7
crossref_primary_10_1016_j_cja_2022_08_009
crossref_primary_10_1016_j_asr_2021_07_005
crossref_primary_10_1109_TAES_2021_3122831
crossref_primary_10_3233_JIFS_189698
Cites_doi 10.1007/978-3-540-77072-5
10.1109/ICCV.2005.29
10.1109/TRO.2005.861480
10.1109/ICCV.1999.790419
10.1109/TRO.2016.2623344
10.1109/TRO.2007.895070
10.1109/TCNS.2017.2691463
10.1137/080734029
10.1145/2492007.2492029
10.1109/TAC.2014.2314223
10.1177/0278364911406562
10.1109/IROS.2013.6696728
10.1016/j.ifacol.2018.12.070
10.1109/ROBOT.2009.5152207
10.1109/ACC.2016.7524914
10.1126/scirobotics.aar7650
10.1109/TRO.2018.2872402
10.1007/BF01212364
10.1177/0278364904045479
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.2974654
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 3579
ExternalDocumentID 10_1109_LRA_2020_2974654
9001183
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: ECCS-1454022
  funderid: 10.13039/100000001
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-19-1-0004
  funderid: 10.13039/100000181
– fundername: ONR
  grantid: N00014-19-1-2478
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-376f48c26e7687fa2f8a00137444055a097c67b1013ecc75a3fed352520a452a3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524329100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Jun 29 12:29:02 EDT 2025
Tue Nov 18 22:36:03 EST 2025
Sat Nov 29 06:03:06 EST 2025
Wed Aug 27 02:35:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-376f48c26e7687fa2f8a00137444055a097c67b1013ecc75a3fed352520a452a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0597-3659
0000-0002-9828-2215
PQID 2386053841
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2020_2974654
crossref_citationtrail_10_1109_LRA_2020_2974654
ieee_primary_9001183
proquest_journals_2386053841
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref20
ref11
ref22
ref10
thrun (ref2) 2005
ref21
gorbenko (ref8) 2012; 6
ref17
ref16
ref19
ref18
ref7
mousavi (ref13) 2019
ref9
ref4
ref3
ref6
ref5
yang (ref1) 2018; 3
References_xml – ident: ref6
  doi: 10.1007/978-3-540-77072-5
– ident: ref11
  doi: 10.1109/ICCV.2005.29
– ident: ref4
  doi: 10.1109/TRO.2005.861480
– ident: ref3
  doi: 10.1109/ICCV.1999.790419
– ident: ref10
  doi: 10.1109/TRO.2016.2623344
– ident: ref5
  doi: 10.1109/TRO.2007.895070
– ident: ref22
  doi: 10.1109/TCNS.2017.2691463
– ident: ref17
  doi: 10.1137/080734029
– year: 2005
  ident: ref2
  publication-title: Probabilistic Robotics
– ident: ref18
  doi: 10.1145/2492007.2492029
– ident: ref20
  doi: 10.1109/TAC.2014.2314223
– ident: ref15
  doi: 10.1177/0278364911406562
– ident: ref9
  doi: 10.1109/IROS.2013.6696728
– ident: ref19
  doi: 10.1016/j.ifacol.2018.12.070
– ident: ref7
  doi: 10.1109/ROBOT.2009.5152207
– ident: ref21
  doi: 10.1109/ACC.2016.7524914
– volume: 6
  start-page: 4729
  year: 2012
  ident: ref8
  article-title: The problem of selection of a minimal set of visual landmarks
  publication-title: Appl Math Sci
– volume: 3
  year: 2018
  ident: ref1
  article-title: The grand challenges of science robotics
  publication-title: Robotics Science
  doi: 10.1126/scirobotics.aar7650
– ident: ref12
  doi: 10.1109/TRO.2018.2872402
– ident: ref16
  doi: 10.1007/BF01212364
– year: 2019
  ident: ref13
  article-title: Estimation with fast landmark selection in robot visual navigation
– ident: ref14
  doi: 10.1177/0278364904045479
SSID ssj0001527395
Score 2.1640604
Snippet We consider the robot localization problem with sparse visual feature selection. The underlying key property is that contributions of trackable features...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3572
SubjectTerms Algorithms
Autonomous agents
Computer simulation
Covariance matrices
Feature extraction
localization
Mathematical models
Navigation
Robot localization
Robots
Vision systems
visual-based navigation
Title Estimation With Fast Feature Selection in Robot Visual Navigation
URI https://ieeexplore.ieee.org/document/9001183
https://www.proquest.com/docview/2386053841
Volume 5
WOSCitedRecordID wos000524329100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Me_DXF6ZQevAh2a9M0aY5DNjzMIVPnbiVNUyxIK2u3o3-7SdpNRRG8BZqE8KVJvveS9z2AS9-JE5xwaXNBlIHiYWJHggibuoIglwiPGy292ZhOJsF8zu4bcL2JhZFSmsdnsqeL5i4_zsVSu8r6zCiWeU1oUkqrWK1Pf4pWEmP--ibSYf3xdKDsP-T0kOLMxMffTh6TSuXH_msOldHe_4azD7s1ebQG1WwfQENmh7DzRVKwDYOhWrNVOKL1nJYv1ogXpaWJ3nIhrQeT9UZ_SzNrmkd5ac3SYqn6nPCVEdvIsyN4Gg0fb27tOk2CLRBzS71FJDgQiEhlOtCEoyTgRi4UY8XGfO4wKgiNXO3wFIL63EtkrFVQkcOxj7h3DK0sz-QJWBRHAZZRzF0ZY8wl51IEAUt8wbEkIu5Afw1hKGoNcZ3K4jU0toTDQgV6qEEPa9A7cLVp8VbpZ_xRt61B3tSr8e1Adz1LYb3AilAxDWWIeQF2T39vdQbbuu_qkU0XWuViKc9hS6zKtFhcQPPufXhh_qAPMPfDNA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFH6Z00Q9-Gsap1M5eDGRDUopcFyMy4y4mDnnbqSUEkkMmAH7-20LmxqNiTeStpR8pe33Xvu-B3BpG1GMY8p1yogwUCxM9JARpjsmI8gkzKJKS2_qO6ORO5t5jw24XsXCcM7V5TPelY_qLD_KWCldZT1PKZZZa7BuY4zMKlrr06MitcQ8e3kWaXg9f9wXFiAyukiwZmLjb3uPSqbyYwVW28pg938ftAc7NX3U-tV470ODpwew_UVUsAX9WzFrq4BE7SUpXrUBzQtNUr1yzrUnlfdGliWpNs7CrNCmSV6Kd47oQsltZOkhPA9uJzdDvU6UoDPkmYVcJGLsMkS4MB6cmKLYpUowFGPBx2xqeA4jTmhKlydjjk2tmEdSBxUZFNuIWkfQTLOUH4Pm4NDFPIyoySOMKaeUM9f1YptRzAmL2tBbQhiwWkVcJrN4C5Q1YXiBAD2QoAc16G24WrV4rxQ0_qjbkiCv6tX4tqGzHKWgnmJ5ILiGMMUsF5snv7e6gM3h5MEP_LvR_SlsyX6qKzcdaBbzkp_BBlsUST4_V__RB-PAxUo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+With+Fast+Feature+Selection+in+Robot+Visual+Navigation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Mousavi%2C+Hossein+K.&rft.au=Motee%2C+Nader&rft.date=2020-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=3572&rft.epage=3579&rft_id=info:doi/10.1109%2FLRA.2020.2974654&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2020_2974654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon