Sparse Recovery From Multiple Measurement Vectors Using Exponentiated Gradient Updates

In this letter, we address the problem of reconstructing the common nonzero support of multiple joint sparse vectors from their noisy and underdetermined linear measurements. The support recovery problem is formulated as the selection of nonnegative hyperparameters of a correlation-aware, joint spar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters Jg. 25; H. 10; S. 1485 - 1489
Hauptverfasser: Khanna, Saurabh, Murthy, Chandra Ramabhadra
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1070-9908, 1558-2361
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this letter, we address the problem of reconstructing the common nonzero support of multiple joint sparse vectors from their noisy and underdetermined linear measurements. The support recovery problem is formulated as the selection of nonnegative hyperparameters of a correlation-aware, joint sparsity inducing Gaussian prior. The hyperparameters are recovered as a nonnegative sparse solution of covariance-matching constraints formulated in the observation space by solving a sequence of proximal regularized convex optimization problems. For proximal regularization based on Von Neumann Bregman matrix divergence, an exponentiated gradient (EG) update is proposed, which when applied iteratively, converges to hyperparameters with the correct sparse support. Compared to existing multiple measurement vector support recovery algorithms, the proposed multiplicative EG update has a significantly lower computational and storage complexity and takes fewer iterations to converge. We empirically demonstrate that the support-recovery algorithm based on the proposed EG update can solve million variable support recovery problems in tens of seconds. Additionally, by leveraging its correlation-awareness property, the proposed algorithm can recover supports of size as high as O(m 2 ) from only m linear measurements per joint sparse vector.
AbstractList In this letter, we address the problem of reconstructing the common nonzero support of multiple joint sparse vectors from their noisy and underdetermined linear measurements. The support recovery problem is formulated as the selection of nonnegative hyperparameters of a correlation-aware, joint sparsity inducing Gaussian prior. The hyperparameters are recovered as a nonnegative sparse solution of covariance-matching constraints formulated in the observation space by solving a sequence of proximal regularized convex optimization problems. For proximal regularization based on Von Neumann Bregman matrix divergence, an exponentiated gradient (EG) update is proposed, which when applied iteratively, converges to hyperparameters with the correct sparse support. Compared to existing multiple measurement vector support recovery algorithms, the proposed multiplicative EG update has a significantly lower computational and storage complexity and takes fewer iterations to converge. We empirically demonstrate that the support-recovery algorithm based on the proposed EG update can solve million variable support recovery problems in tens of seconds. Additionally, by leveraging its correlation-awareness property, the proposed algorithm can recover supports of size as high as O(m 2 ) from only m linear measurements per joint sparse vector.
In this letter, we address the problem of reconstructing the common nonzero support of multiple joint sparse vectors from their noisy and underdetermined linear measurements. The support recovery problem is formulated as the selection of nonnegative hyperparameters of a correlation-aware, joint sparsity inducing Gaussian prior. The hyperparameters are recovered as a nonnegative sparse solution of covariance-matching constraints formulated in the observation space by solving a sequence of proximal regularized convex optimization problems. For proximal regularization based on Von Neumann Bregman matrix divergence, an exponentiated gradient (EG) update is proposed, which when applied iteratively, converges to hyperparameters with the correct sparse support. Compared to existing multiple measurement vector support recovery algorithms, the proposed multiplicative EG update has a significantly lower computational and storage complexity and takes fewer iterations to converge. We empirically demonstrate that the support-recovery algorithm based on the proposed EG update can solve million variable support recovery problems in tens of seconds. Additionally, by leveraging its correlation-awareness property, the proposed algorithm can recover supports of size as high as [Formula Omitted] from only [Formula Omitted] linear measurements per joint sparse vector.
Author Khanna, Saurabh
Murthy, Chandra Ramabhadra
Author_xml – sequence: 1
  givenname: Saurabh
  surname: Khanna
  fullname: Khanna, Saurabh
  email: saurabh@iisc.ac.in
  organization: Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India
– sequence: 2
  givenname: Chandra Ramabhadra
  surname: Murthy
  fullname: Murthy, Chandra Ramabhadra
  email: cmurthy@iisc.ac.in
  organization: Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India
BookMark eNp9kM1LAzEQxYNUsK3eBS8Lnrfmaz9ylNJWoUWxttclm8xKynazJlmx_71bWjx48DTD8H7zHm-EBo1tAKFbgieEYPGwXL9OKCb5hOZpkmb0Ag1JkuQxZSkZ9DvOcCwEzq_QyPsdxjgneTJE23UrnYfoDZT9AneI5s7uo1VXB9PWEK1A-s7BHpoQbUEF63y08ab5iGbfbR-gCUYG0NHCSW2Ook2r-4O_RpeVrD3cnOcYbeaz9-lTvHxZPE8fl7GigoSYpUIJnRLJy5woyLjOVFkSUQmtS5FimgDoiqmSSBCca60Ur5ROGC2FTDhlY3R_-ts6-9mBD8XOdq7pLQtKSEa4YEz0KnxSKWe9d1AVrTN76Q4FwcWxvaJvrzi2V5zb65H0D6JMkMHYJjhp6v_AuxNoAODXJ-esD8PZDw7hgD4
CODEN ISPLEM
CitedBy_id crossref_primary_10_1109_LSP_2021_3089434
crossref_primary_10_1109_TGRS_2022_3183985
crossref_primary_10_1109_TIT_2022_3187131
crossref_primary_10_1016_j_dsp_2023_104107
crossref_primary_10_1109_ACCESS_2019_2950278
crossref_primary_10_1109_LSP_2021_3084517
Cites_doi 10.1109/ICASSP.2016.7472274
10.1109/TSP.2018.2858211
10.1109/ICASSP.2005.1416405
10.1109/TSP.2012.2236830
10.1006/inco.1996.2612
10.1109/TSP.2009.2038417
10.1109/ACSSC.2005.1600024
10.1109/TSP.2014.2301980
10.1109/TSP.2014.2385033
10.1109/TIT.2004.834793
10.1109/TSP.2007.894265
10.1109/TIT.2011.2171529
10.1109/TIT.2012.2189196
10.1109/LSP.2013.2294862
10.1109/TSP.2014.2343940
10.1109/JSTSP.2007.910971
10.1109/TSP.2006.881263
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2018.2865672
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 1489
ExternalDocumentID 10_1109_LSP_2018_2865672
8437144
Genre orig-research
GrantInformation_xml – fundername: Young Faculty Research Fellowship
– fundername: Ministry of Electronics and Information Technology, Government of India
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-369c9d61a4b81ce74d7cbb19f9ddb96025eedf3cb1ae944ddcc4fcd532b9a5423
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443036200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Mon Jun 30 05:03:44 EDT 2025
Tue Nov 18 20:15:39 EST 2025
Sat Nov 29 01:48:51 EST 2025
Wed Aug 27 02:50:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-369c9d61a4b81ce74d7cbb19f9ddb96025eedf3cb1ae944ddcc4fcd532b9a5423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4901-9434
0000-0003-4276-3949
PQID 2117149339
PQPubID 75747
PageCount 5
ParticipantIDs proquest_journals_2117149339
crossref_primary_10_1109_LSP_2018_2865672
crossref_citationtrail_10_1109_LSP_2018_2865672
ieee_primary_8437144
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References khanna (ref17) 2017
ref12
ref15
ref14
ref20
ref11
ref10
khanna (ref13) 0
ref2
ref1
ref16
ref19
ref8
ref7
ref9
tsuda (ref18) 2005; 6
ref4
ref3
ref6
ref5
References_xml – volume: 6
  start-page: 995
  year: 2005
  ident: ref18
  article-title: Matrix exponentiated gradient updates for on-line learning and Bregman projection
  publication-title: J Mach Learn Res
– ident: ref4
  doi: 10.1109/ICASSP.2016.7472274
– ident: ref15
  doi: 10.1109/TSP.2018.2858211
– start-page: 1
  year: 0
  ident: ref13
  article-title: Rényi divergence based covariance matching pursuit of joint sparse support
  publication-title: Proc Signal Process Advances Wireless Commun
– ident: ref2
  doi: 10.1109/ICASSP.2005.1416405
– ident: ref7
  doi: 10.1109/TSP.2012.2236830
– ident: ref19
  doi: 10.1006/inco.1996.2612
– year: 2017
  ident: ref17
  article-title: On the support recovery of jointly sparse Gaussian sources using sparse Bayesian learning
  publication-title: CoRR
– ident: ref3
  doi: 10.1109/TSP.2009.2038417
– ident: ref1
  doi: 10.1109/ACSSC.2005.1600024
– ident: ref9
  doi: 10.1109/TSP.2014.2301980
– ident: ref12
  doi: 10.1109/TSP.2014.2385033
– ident: ref8
  doi: 10.1109/TIT.2004.834793
– ident: ref16
  doi: 10.1109/TSP.2007.894265
– ident: ref10
  doi: 10.1109/TIT.2011.2171529
– ident: ref11
  doi: 10.1109/TIT.2012.2189196
– ident: ref14
  doi: 10.1109/LSP.2013.2294862
– ident: ref5
  doi: 10.1109/TSP.2014.2343940
– ident: ref20
  doi: 10.1109/JSTSP.2007.910971
– ident: ref6
  doi: 10.1109/TSP.2006.881263
SSID ssj0008185
Score 2.2950227
Snippet In this letter, we address the problem of reconstructing the common nonzero support of multiple joint sparse vectors from their noisy and underdetermined...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1485
SubjectTerms Algorithms
Compressive sensing
Computational geometry
Convergence
Convexity
Covariance
covariance matching
Covariance matrices
Divergence
exponentiated gradient (EG) updates
joint sparsity
multiple measurement vectors
Noise measurement
Optimization
Recovery
Regularization
Sensors
Signal processing algorithms
Size measurement
Sparse matrices
sparse recovery
Symmetric matrices
Von Neumann divergence
Title Sparse Recovery From Multiple Measurement Vectors Using Exponentiated Gradient Updates
URI https://ieeexplore.ieee.org/document/8437144
https://www.proquest.com/docview/2117149339
Volume 25
WOSCitedRecordID wos000443036200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHX1WsVtmDF8G0eWyy2aNIq4e2FGpLbyH7CAjahiQV_ffubtKoKIK3QHY3YWZn57HfzABcOYx7rsBK0jwRWphxYsVCckv4JAkwlQ4xPZbmQzIeh4sFnTTgps6FkVIa8Jns6kdzly9WfK1DZb0Q6_pyeAu2CAnKXK361NWKp8QX2pY6YcPNlaRNe8PpRGO4wq7OwgyI-00FmZ4qPw5io10G-__7rwPYq6xIdFuy_RAacnkEu19qC7ZgPk2VzyqR9i_Vdn1Hg2z1gkYVfhCNPmODaG4i9zky8AHUf0tXS40hUlaoQPeZwYQVaJbq2EB-DLNB__HuwaqaKFjcpU5heQHlVAROjFnocEmwIJwxhyZUCKbcF9dXWjLxOHNiSTEWgnOccOF7LqOxr4ytE2gu1WdPAUmmxJvZiTK5CPaTkBESxlKZfAFhQYB5G3obuka8qjCuG108R8bTsGmkOBFpTkQVJ9pwXc9Iy-oaf4xtacrX4yqit6GzYV1UiV8eKa9WvaOeR89-n3UOO3rtEpXXgWaRreUFbPPX4inPLs3O-gA3Bsz6
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3sXp1Dz4Ititl7RpHkU2J3ZjsAt7K82lIOg2tk7035uk3VQUwbdCElJycq75zjkAVw7jniuw4jRPhBZmnFiJkNwSPkkDTKVDTI-lYUQ6nXA0ot0S3KxyYaSUBnwma_rTvOWLCV_oUFk9xLq-HF6DdR9j186ztVZyV6ueHGFoW0rGhstHSZvWo15Xo7jCms7DDIj7TQmZrio_RLHRL83d__3ZHuwUdiS6zQm_DyU5PoDtL9UFD2HYmyqvVSLtYaoL-46as8kLahcIQtT-jA6ioYndz5EBEKDG23Qy1igiZYcKdD8zqLAMDaY6OjA_gkGz0b9rWUUbBYu71MksL6CcisBJMAsdLgkWhDPm0JQKwZQD4_pKT6YeZ04iKcZCcI5TLnzPZTTxlbl1DOWx2vYEkGSKwZmdKqOLYD8NGSFhIpXRFxAWBJhXoL4815gXNcZ1q4vn2PgaNo0VJWJNibigRAWuVyumeX2NP-Ye6pNfzSsOvQLVJeniggHnsfJr1Rj1PHr6-6pL2Gz121EcPXQez2BL75Nj9KpQzmYLeQ4b_DV7ms8uzC37AAjD0EE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Recovery+From+Multiple+Measurement+Vectors+Using+Exponentiated+Gradient+Updates&rft.jtitle=IEEE+signal+processing+letters&rft.au=Khanna%2C+Saurabh&rft.au=Murthy%2C+Chandra+Ramabhadra&rft.date=2018-10-01&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=25&rft.issue=10&rft.spage=1485&rft.epage=1489&rft_id=info:doi/10.1109%2FLSP.2018.2865672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2018_2865672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon