Sparse Recovery From Multiple Measurement Vectors Using Exponentiated Gradient Updates
In this letter, we address the problem of reconstructing the common nonzero support of multiple joint sparse vectors from their noisy and underdetermined linear measurements. The support recovery problem is formulated as the selection of nonnegative hyperparameters of a correlation-aware, joint spar...
Gespeichert in:
| Veröffentlicht in: | IEEE signal processing letters Jg. 25; H. 10; S. 1485 - 1489 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1070-9908, 1558-2361 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this letter, we address the problem of reconstructing the common nonzero support of multiple joint sparse vectors from their noisy and underdetermined linear measurements. The support recovery problem is formulated as the selection of nonnegative hyperparameters of a correlation-aware, joint sparsity inducing Gaussian prior. The hyperparameters are recovered as a nonnegative sparse solution of covariance-matching constraints formulated in the observation space by solving a sequence of proximal regularized convex optimization problems. For proximal regularization based on Von Neumann Bregman matrix divergence, an exponentiated gradient (EG) update is proposed, which when applied iteratively, converges to hyperparameters with the correct sparse support. Compared to existing multiple measurement vector support recovery algorithms, the proposed multiplicative EG update has a significantly lower computational and storage complexity and takes fewer iterations to converge. We empirically demonstrate that the support-recovery algorithm based on the proposed EG update can solve million variable support recovery problems in tens of seconds. Additionally, by leveraging its correlation-awareness property, the proposed algorithm can recover supports of size as high as O(m 2 ) from only m linear measurements per joint sparse vector. |
|---|---|
| AbstractList | In this letter, we address the problem of reconstructing the common nonzero support of multiple joint sparse vectors from their noisy and underdetermined linear measurements. The support recovery problem is formulated as the selection of nonnegative hyperparameters of a correlation-aware, joint sparsity inducing Gaussian prior. The hyperparameters are recovered as a nonnegative sparse solution of covariance-matching constraints formulated in the observation space by solving a sequence of proximal regularized convex optimization problems. For proximal regularization based on Von Neumann Bregman matrix divergence, an exponentiated gradient (EG) update is proposed, which when applied iteratively, converges to hyperparameters with the correct sparse support. Compared to existing multiple measurement vector support recovery algorithms, the proposed multiplicative EG update has a significantly lower computational and storage complexity and takes fewer iterations to converge. We empirically demonstrate that the support-recovery algorithm based on the proposed EG update can solve million variable support recovery problems in tens of seconds. Additionally, by leveraging its correlation-awareness property, the proposed algorithm can recover supports of size as high as O(m 2 ) from only m linear measurements per joint sparse vector. In this letter, we address the problem of reconstructing the common nonzero support of multiple joint sparse vectors from their noisy and underdetermined linear measurements. The support recovery problem is formulated as the selection of nonnegative hyperparameters of a correlation-aware, joint sparsity inducing Gaussian prior. The hyperparameters are recovered as a nonnegative sparse solution of covariance-matching constraints formulated in the observation space by solving a sequence of proximal regularized convex optimization problems. For proximal regularization based on Von Neumann Bregman matrix divergence, an exponentiated gradient (EG) update is proposed, which when applied iteratively, converges to hyperparameters with the correct sparse support. Compared to existing multiple measurement vector support recovery algorithms, the proposed multiplicative EG update has a significantly lower computational and storage complexity and takes fewer iterations to converge. We empirically demonstrate that the support-recovery algorithm based on the proposed EG update can solve million variable support recovery problems in tens of seconds. Additionally, by leveraging its correlation-awareness property, the proposed algorithm can recover supports of size as high as [Formula Omitted] from only [Formula Omitted] linear measurements per joint sparse vector. |
| Author | Khanna, Saurabh Murthy, Chandra Ramabhadra |
| Author_xml | – sequence: 1 givenname: Saurabh surname: Khanna fullname: Khanna, Saurabh email: saurabh@iisc.ac.in organization: Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India – sequence: 2 givenname: Chandra Ramabhadra surname: Murthy fullname: Murthy, Chandra Ramabhadra email: cmurthy@iisc.ac.in organization: Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India |
| BookMark | eNp9kM1LAzEQxYNUsK3eBS8Lnrfmaz9ylNJWoUWxttclm8xKynazJlmx_71bWjx48DTD8H7zHm-EBo1tAKFbgieEYPGwXL9OKCb5hOZpkmb0Ag1JkuQxZSkZ9DvOcCwEzq_QyPsdxjgneTJE23UrnYfoDZT9AneI5s7uo1VXB9PWEK1A-s7BHpoQbUEF63y08ab5iGbfbR-gCUYG0NHCSW2Ook2r-4O_RpeVrD3cnOcYbeaz9-lTvHxZPE8fl7GigoSYpUIJnRLJy5woyLjOVFkSUQmtS5FimgDoiqmSSBCca60Ur5ROGC2FTDhlY3R_-ts6-9mBD8XOdq7pLQtKSEa4YEz0KnxSKWe9d1AVrTN76Q4FwcWxvaJvrzi2V5zb65H0D6JMkMHYJjhp6v_AuxNoAODXJ-esD8PZDw7hgD4 |
| CODEN | ISPLEM |
| CitedBy_id | crossref_primary_10_1109_LSP_2021_3089434 crossref_primary_10_1109_TGRS_2022_3183985 crossref_primary_10_1109_TIT_2022_3187131 crossref_primary_10_1016_j_dsp_2023_104107 crossref_primary_10_1109_ACCESS_2019_2950278 crossref_primary_10_1109_LSP_2021_3084517 |
| Cites_doi | 10.1109/ICASSP.2016.7472274 10.1109/TSP.2018.2858211 10.1109/ICASSP.2005.1416405 10.1109/TSP.2012.2236830 10.1006/inco.1996.2612 10.1109/TSP.2009.2038417 10.1109/ACSSC.2005.1600024 10.1109/TSP.2014.2301980 10.1109/TSP.2014.2385033 10.1109/TIT.2004.834793 10.1109/TSP.2007.894265 10.1109/TIT.2011.2171529 10.1109/TIT.2012.2189196 10.1109/LSP.2013.2294862 10.1109/TSP.2014.2343940 10.1109/JSTSP.2007.910971 10.1109/TSP.2006.881263 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LSP.2018.2865672 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2361 |
| EndPage | 1489 |
| ExternalDocumentID | 10_1109_LSP_2018_2865672 8437144 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Young Faculty Research Fellowship – fundername: Ministry of Electronics and Information Technology, Government of India |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c291t-369c9d61a4b81ce74d7cbb19f9ddb96025eedf3cb1ae944ddcc4fcd532b9a5423 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443036200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1070-9908 |
| IngestDate | Mon Jun 30 05:03:44 EDT 2025 Tue Nov 18 20:15:39 EST 2025 Sat Nov 29 01:48:51 EST 2025 Wed Aug 27 02:50:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-369c9d61a4b81ce74d7cbb19f9ddb96025eedf3cb1ae944ddcc4fcd532b9a5423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4901-9434 0000-0003-4276-3949 |
| PQID | 2117149339 |
| PQPubID | 75747 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2117149339 crossref_primary_10_1109_LSP_2018_2865672 crossref_citationtrail_10_1109_LSP_2018_2865672 ieee_primary_8437144 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE signal processing letters |
| PublicationTitleAbbrev | LSP |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | khanna (ref17) 2017 ref12 ref15 ref14 ref20 ref11 ref10 khanna (ref13) 0 ref2 ref1 ref16 ref19 ref8 ref7 ref9 tsuda (ref18) 2005; 6 ref4 ref3 ref6 ref5 |
| References_xml | – volume: 6 start-page: 995 year: 2005 ident: ref18 article-title: Matrix exponentiated gradient updates for on-line learning and Bregman projection publication-title: J Mach Learn Res – ident: ref4 doi: 10.1109/ICASSP.2016.7472274 – ident: ref15 doi: 10.1109/TSP.2018.2858211 – start-page: 1 year: 0 ident: ref13 article-title: Rényi divergence based covariance matching pursuit of joint sparse support publication-title: Proc Signal Process Advances Wireless Commun – ident: ref2 doi: 10.1109/ICASSP.2005.1416405 – ident: ref7 doi: 10.1109/TSP.2012.2236830 – ident: ref19 doi: 10.1006/inco.1996.2612 – year: 2017 ident: ref17 article-title: On the support recovery of jointly sparse Gaussian sources using sparse Bayesian learning publication-title: CoRR – ident: ref3 doi: 10.1109/TSP.2009.2038417 – ident: ref1 doi: 10.1109/ACSSC.2005.1600024 – ident: ref9 doi: 10.1109/TSP.2014.2301980 – ident: ref12 doi: 10.1109/TSP.2014.2385033 – ident: ref8 doi: 10.1109/TIT.2004.834793 – ident: ref16 doi: 10.1109/TSP.2007.894265 – ident: ref10 doi: 10.1109/TIT.2011.2171529 – ident: ref11 doi: 10.1109/TIT.2012.2189196 – ident: ref14 doi: 10.1109/LSP.2013.2294862 – ident: ref5 doi: 10.1109/TSP.2014.2343940 – ident: ref20 doi: 10.1109/JSTSP.2007.910971 – ident: ref6 doi: 10.1109/TSP.2006.881263 |
| SSID | ssj0008185 |
| Score | 2.2950227 |
| Snippet | In this letter, we address the problem of reconstructing the common nonzero support of multiple joint sparse vectors from their noisy and underdetermined... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1485 |
| SubjectTerms | Algorithms Compressive sensing Computational geometry Convergence Convexity Covariance covariance matching Covariance matrices Divergence exponentiated gradient (EG) updates joint sparsity multiple measurement vectors Noise measurement Optimization Recovery Regularization Sensors Signal processing algorithms Size measurement Sparse matrices sparse recovery Symmetric matrices Von Neumann divergence |
| Title | Sparse Recovery From Multiple Measurement Vectors Using Exponentiated Gradient Updates |
| URI | https://ieeexplore.ieee.org/document/8437144 https://www.proquest.com/docview/2117149339 |
| Volume | 25 |
| WOSCitedRecordID | wos000443036200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2361 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008185 issn: 1070-9908 databaseCode: RIE dateStart: 19940101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHX1WsVtmDF8G0eWyy2aNIq4e2FGpLbyH7CAjahiQV_ffubtKoKIK3QHY3YWZn57HfzABcOYx7rsBK0jwRWphxYsVCckv4JAkwlQ4xPZbmQzIeh4sFnTTgps6FkVIa8Jns6kdzly9WfK1DZb0Q6_pyeAu2CAnKXK361NWKp8QX2pY6YcPNlaRNe8PpRGO4wq7OwgyI-00FmZ4qPw5io10G-__7rwPYq6xIdFuy_RAacnkEu19qC7ZgPk2VzyqR9i_Vdn1Hg2z1gkYVfhCNPmODaG4i9zky8AHUf0tXS40hUlaoQPeZwYQVaJbq2EB-DLNB__HuwaqaKFjcpU5heQHlVAROjFnocEmwIJwxhyZUCKbcF9dXWjLxOHNiSTEWgnOccOF7LqOxr4ytE2gu1WdPAUmmxJvZiTK5CPaTkBESxlKZfAFhQYB5G3obuka8qjCuG108R8bTsGmkOBFpTkQVJ9pwXc9Iy-oaf4xtacrX4yqit6GzYV1UiV8eKa9WvaOeR89-n3UOO3rtEpXXgWaRreUFbPPX4inPLs3O-gA3Bsz6 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3sXp1Dz4Ititl7RpHkU2J3ZjsAt7K82lIOg2tk7035uk3VQUwbdCElJycq75zjkAVw7jniuw4jRPhBZmnFiJkNwSPkkDTKVDTI-lYUQ6nXA0ot0S3KxyYaSUBnwma_rTvOWLCV_oUFk9xLq-HF6DdR9j186ztVZyV6ueHGFoW0rGhstHSZvWo15Xo7jCms7DDIj7TQmZrio_RLHRL83d__3ZHuwUdiS6zQm_DyU5PoDtL9UFD2HYmyqvVSLtYaoL-46as8kLahcIQtT-jA6ioYndz5EBEKDG23Qy1igiZYcKdD8zqLAMDaY6OjA_gkGz0b9rWUUbBYu71MksL6CcisBJMAsdLgkWhDPm0JQKwZQD4_pKT6YeZ04iKcZCcI5TLnzPZTTxlbl1DOWx2vYEkGSKwZmdKqOLYD8NGSFhIpXRFxAWBJhXoL4815gXNcZ1q4vn2PgaNo0VJWJNibigRAWuVyumeX2NP-Ye6pNfzSsOvQLVJeniggHnsfJr1Rj1PHr6-6pL2Gz121EcPXQez2BL75Nj9KpQzmYLeQ4b_DV7ms8uzC37AAjD0EE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Recovery+From+Multiple+Measurement+Vectors+Using+Exponentiated+Gradient+Updates&rft.jtitle=IEEE+signal+processing+letters&rft.au=Khanna%2C+Saurabh&rft.au=Murthy%2C+Chandra+Ramabhadra&rft.date=2018-10-01&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=25&rft.issue=10&rft.spage=1485&rft.epage=1489&rft_id=info:doi/10.1109%2FLSP.2018.2865672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2018_2865672 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |