OHM: GPU Based Occupancy Map Generation

Occupancy grid maps (OGMs) are fundamental to most systems for autonomous robotic navigation. However, CPU-based implementations struggle to keep up with data rates from modern 3D lidar sensors, and provide little capacity for modern extensions which maintain richer voxel representations. This artic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 7; no. 4; pp. 11078 - 11085
Main Authors: Stepanas, Kazys, Williams, Jason, Hernandez, Emili, Ruetz, Fabio, Hines, Thomas
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Occupancy grid maps (OGMs) are fundamental to most systems for autonomous robotic navigation. However, CPU-based implementations struggle to keep up with data rates from modern 3D lidar sensors, and provide little capacity for modern extensions which maintain richer voxel representations. This article presents Occupancy Homogenous Mapping (OHM), our open source, GPU-based OGM framework. We show how the algorithms can be mapped to GPU resources, resolving difficulties with contention to obtain a successful implementation. The implementation supports many modern OGM algorithms including Normal Distributions Transform-Occupancy Maps (NDT-OM), Normal Distributions Transform-Traversability Maps (NDT-TM), decay-rate and Truncated Sign Distance Function (TSDF). A thorough performance evaluation is presented based on tracked and quadruped Uncrewed Ground Vehicle (UGV) platforms and UAVs, and data sets from both outdoor and subterranean environments. The results demonstrate excellent performance improvements both offline, and for online processing in embedded platforms. Finally, we describe how OHM was a key enabler for the UGV navigation solution for our entry in the Defense Advanced Research Projects Agency (DARPA) Subterranean Challenge, which placed second at the Final Event.
AbstractList Occupancy grid maps (OGMs) are fundamental to most systems for autonomous robotic navigation. However, CPU-based implementations struggle to keep up with data rates from modern 3D lidar sensors, and provide little capacity for modern extensions which maintain richer voxel representations. This article presents Occupancy Homogenous Mapping (OHM), our open source, GPU-based OGM framework. We show how the algorithms can be mapped to GPU resources, resolving difficulties with contention to obtain a successful implementation. The implementation supports many modern OGM algorithms including Normal Distributions Transform-Occupancy Maps (NDT-OM), Normal Distributions Transform-Traversability Maps (NDT-TM), decay-rate and Truncated Sign Distance Function (TSDF). A thorough performance evaluation is presented based on tracked and quadruped Uncrewed Ground Vehicle (UGV) platforms and UAVs, and data sets from both outdoor and subterranean environments. The results demonstrate excellent performance improvements both offline, and for online processing in embedded platforms. Finally, we describe how OHM was a key enabler for the UGV navigation solution for our entry in the Defense Advanced Research Projects Agency (DARPA) Subterranean Challenge, which placed second at the Final Event.
Author Hines, Thomas
Stepanas, Kazys
Ruetz, Fabio
Williams, Jason
Hernandez, Emili
Author_xml – sequence: 1
  givenname: Kazys
  orcidid: 0000-0003-2183-9991
  surname: Stepanas
  fullname: Stepanas, Kazys
  email: kazys.stepanas@csiro.au
  organization: Robotics and Autonomous Systems Group (RASG), CSIRO, Pullenvale, QLD, Australia
– sequence: 2
  givenname: Jason
  orcidid: 0000-0002-2416-075X
  surname: Williams
  fullname: Williams, Jason
  email: jason.williams@csiro.au
  organization: Robotics and Autonomous Systems Group (RASG), CSIRO, Pullenvale, QLD, Australia
– sequence: 3
  givenname: Emili
  orcidid: 0000-0002-6143-6161
  surname: Hernandez
  fullname: Hernandez, Emili
  email: emili.hernandez@emesent.io
  organization: CSIRO RASG, Pullenvale, QLD, Australia
– sequence: 4
  givenname: Fabio
  orcidid: 0000-0002-3277-3134
  surname: Ruetz
  fullname: Ruetz, Fabio
  email: fabio.ruetz@csiro.au
  organization: Robotics and Autonomous Systems Group (RASG), CSIRO, Pullenvale, QLD, Australia
– sequence: 5
  givenname: Thomas
  orcidid: 0000-0003-2820-8201
  surname: Hines
  fullname: Hines, Thomas
  email: thomas.hines@csiro.au
  organization: Robotics and Autonomous Systems Group (RASG), CSIRO, Pullenvale, QLD, Australia
BookMark eNp9kEtLw0AURgepYK3dC24CLlylziPzcleLtkJKROx6mFcgpSZxJl3035uaIuLC1b2L79zHuQSjuqk9ANcIzhCC8j5_m88wxHhGkGQoo2dgjAnnKeGMjX71F2Aa4xZCiCjmRNIxuCtW64dk-bpJHnX0Lims3be6todkrdtk6WsfdFc19RU4L_Uu-umpTsDm-el9sUrzYvmymOepxRJ1KS49owxSKUohrfbeG2OpNc5aKFxpHSWEOmS8x5bLTEhnNCVaGAy5dsKQCbgd5rah-dz72Kltsw91v1JhDpmQGUFZn2JDyoYmxuBLZavu-84u6GqnEFRHL6r3oo5e1MlLD8I_YBuqDx0O_yE3A1L13_zEpcgkzAT5AhHTbak
CODEN IRALC6
CitedBy_id crossref_primary_10_1007_s11277_024_11337_3
crossref_primary_10_1002_rob_22189
crossref_primary_10_1109_LRA_2024_3417115
crossref_primary_10_1109_LRA_2024_3396056
crossref_primary_10_1080_10095020_2024_2377800
crossref_primary_10_1109_ACCESS_2024_3373004
crossref_primary_10_1109_LRA_2022_3230325
crossref_primary_10_1109_LRA_2023_3300227
Cites_doi 10.1007/s10514-012-9321-0
10.1609/aaai.v26i1.8377
10.1002/rob.21951
10.1109/LRA.2021.3101885
10.1016/j.eswa.2021.115077
10.1109/TITS.2014.2313562
10.1109/LRA.2017.2669376
10.1109/ACCESS.2021.3070694
10.1177/0278364913499415
10.1109/ICRA.2011.5979830
10.1002/rob.21657
10.1109/IVS.2010.5548091
10.1109/ROBOT.2010.5509725
10.3390/robotics10030103
10.1109/LRA.2021.3065302
10.1109/ISMAR.2011.6092378
10.1109/ICRA.2015.7139336
10.1109/IROS.2017.8202315
10.1109/ICRA40945.2020.9197072
10.1002/rob.21827
10.23919/DATE.2018.8342050
10.55417/fr.2022021
10.1109/2.30720
10.1145/237170.237269
10.1109/ACCESS.2021.3133100
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2022.3196145
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 11085
ExternalDocumentID 10_1109_LRA_2022_3196145
9849048
Genre orig-research
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  funderid: 10.13039/100000185
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-2fe6560598f89caeeebbc5cbdcc08dfcd5335d1bee2c79489dba53a8b207ad8b3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845062300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Mon Jun 30 07:07:30 EDT 2025
Sat Nov 29 06:03:21 EST 2025
Tue Nov 18 22:41:06 EST 2025
Wed Aug 27 02:28:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-2fe6560598f89caeeebbc5cbdcc08dfcd5335d1bee2c79489dba53a8b207ad8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2416-075X
0000-0003-2820-8201
0000-0002-6143-6161
0000-0003-2183-9991
0000-0002-3277-3134
PQID 2706894314
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_LRA_2022_3196145
crossref_primary_10_1109_LRA_2022_3196145
proquest_journals_2706894314
ieee_primary_9849048
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
Zhou (ref31) 2018
ref15
ref11
ref10
(ref6) 2022
ref2
ref1
ref17
ref16
ref19
(ref8) 2022
(ref22) 2022
ref24
ref23
ref26
ref25
Hernndez (ref18) 2009
ref20
(ref32) 2022
(ref14) 2022
ref21
Maybeck (ref34) 1979
Amanatides (ref33) 1987; 87
ref28
ref27
ref29
ref7
(ref30) 2022
ref9
ref4
ref3
ref5
References_xml – year: 2022
  ident: ref8
  article-title: Occupancy homogeneous map
– year: 2018
  ident: ref31
  article-title: Open3D: A modern library for 3D data processing
– ident: ref7
  doi: 10.1007/s10514-012-9321-0
– ident: ref13
  doi: 10.1609/aaai.v26i1.8377
– start-page: 286
  volume-title: Proc. Int. Federation Autom. Control
  year: 2009
  ident: ref18
  article-title: Occupancy grid mapping in an underwater structured environment
– ident: ref21
  doi: 10.1002/rob.21951
– volume-title: Stochastic Models, Estimation and Control
  year: 1979
  ident: ref34
– ident: ref15
  doi: 10.1109/LRA.2021.3101885
– ident: ref24
  doi: 10.1016/j.eswa.2021.115077
– ident: ref11
  doi: 10.1109/TITS.2014.2313562
– ident: ref4
  doi: 10.1109/LRA.2017.2669376
– ident: ref17
  doi: 10.1109/ACCESS.2021.3070694
– volume: 87
  start-page: 3
  year: 1987
  ident: ref33
  article-title: A fast voxel traversal algorithm for ray tracing
  publication-title: Eurographics
– ident: ref2
  doi: 10.1177/0278364913499415
– ident: ref23
  doi: 10.1109/ICRA.2011.5979830
– ident: ref3
  doi: 10.1002/rob.21657
– year: 2022
  ident: ref14
  article-title: Hovermap
– ident: ref25
  doi: 10.1109/IVS.2010.5548091
– ident: ref9
  doi: 10.1109/ROBOT.2010.5509725
– ident: ref16
  doi: 10.3390/robotics10030103
– ident: ref12
  doi: 10.1109/LRA.2021.3065302
– ident: ref29
  doi: 10.1109/ISMAR.2011.6092378
– ident: ref19
  doi: 10.1109/ICRA.2015.7139336
– year: 2022
  ident: ref30
  article-title: Gpu-voxels
– ident: ref5
  doi: 10.1109/IROS.2017.8202315
– year: 2022
  ident: ref6
  article-title: DARPA SubTerranean Challenge
– ident: ref10
  doi: 10.1109/ICRA40945.2020.9197072
– ident: ref20
  doi: 10.1002/rob.21827
– year: 2022
  ident: ref22
  article-title: Moveit
– ident: ref26
  doi: 10.23919/DATE.2018.8342050
– ident: ref27
  doi: 10.55417/fr.2022021
– ident: ref1
  doi: 10.1109/2.30720
– year: 2022
  ident: ref32
  article-title: nvblox
– ident: ref28
  doi: 10.1145/237170.237269
– ident: ref35
  doi: 10.1109/ACCESS.2021.3133100
SSID ssj0001527395
Score 2.2964637
Snippet Occupancy grid maps (OGMs) are fundamental to most systems for autonomous robotic navigation. However, CPU-based implementations struggle to keep up with data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11078
SubjectTerms Algorithms
Autonomous navigation
Autonomous vehicle navigation
Decay rate
Graphics processing units
Laser radar
Navigation
Occupancy
Performance evaluation
Platforms
Research projects
Robot sensing systems
Robots
sensor fusion
Sensors
software tools for robot programming
Three-dimensional displays
Unmanned ground vehicles
Title OHM: GPU Based Occupancy Map Generation
URI https://ieeexplore.ieee.org/document/9849048
https://www.proquest.com/docview/2706894314
Volume 7
WOSCitedRecordID wos000845062300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrWUPggim3c0-knir0tqDrUUs9LZsJlkQpC19ePS3m-xua0ERvO0hWcI3k3kkmW8AroyaCMmkJpqHihiDx4gJ6lOSeinlKEXEUGXNJthgwMdjMSzB7aYWRmudPT7TTfuZ3eWrKa7sUVlL8EAYjStDmbEor9X6Pk-xTGIiXN9EuqL19NI2-R-lTatlnq1X2vI8WSuVH_Y3cyrdg_8t5xD2i-DRaefSPoKSnhzD3halYBWun3v9O-dxOHLujX9STs4ibCyo009mTk4ybWVxAqNu5_WhR4pmCASp8JaEptry5IQGSC4wMYuREkOUCtHlKkVl4rZQeVJrimaPcaFkEvoJl9RlieLSP4XKZDrRZ-AELkdOtQh9tNlhJDj1Ey81mZHwpdKsBq01UDEWTOG2YcV7nGUMrogNtLGFNi6grcHNZsYsZ8n4Y2zVQrkZV6BYg_paFnGxjRYxZW5kCeK94Pz3WRewa_-dv66rQ2U5X-lL2MGP5dti3oBy_7PTyPTkC3c2uVM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv6Y4ndoHQQS7tWmzJr5NcU7c5pANfAvNJQVBtrEP_36TtpsDRfCtDwkNv7vcR5L7HcClURMuI6ldzahyjcGLXBPUJ27iJ4Sh5PUIVdpsIup22dsb7xXgZlkLo7VOH5_pqv1M7_LVCOf2qKzGWciNxq3BOg1D4mXVWt8nKpZLjNPFXaTHa-3XhskACalaPfNtxdKK70mbqfywwKlbae7-b0F7sJOHj04jk_c-FPTwALZXSAVLcPXS6tw6j72Bc2c8lHIyHmFjQ51OPHYymmkrjUMYNB_69y03b4fgIuH-zCWJtkw51EDJOMZmMVIiRakQPaYSVCZyo8qXWhM0u4xxJWMaxEwSL4oVk8ERFIejoT4GJ_QYMqI5DdDmh3XOSBD7icmNeCCVjspQWwAlMOcKty0rPkSaM3hcGGiFhVbk0JbhejljnPFk_DG2ZKFcjstRLENlIQuRb6SpIJFXtxTxfnjy-6wL2Gz1O23Rfuo-n8KW_U_21q4Cxdlkrs9gAz9n79PJeaotX-WBu2k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OHM%3A+GPU+Based+Occupancy+Map+Generation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Stepanas%2C+Kazys&rft.au=Williams%2C+Jason&rft.au=Hernandez%2C+Emili&rft.au=Ruetz%2C+Fabio&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=7&rft.issue=4&rft.spage=11078&rft.epage=11085&rft_id=info:doi/10.1109%2FLRA.2022.3196145&rft.externalDocID=9849048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon