OHM: GPU Based Occupancy Map Generation
Occupancy grid maps (OGMs) are fundamental to most systems for autonomous robotic navigation. However, CPU-based implementations struggle to keep up with data rates from modern 3D lidar sensors, and provide little capacity for modern extensions which maintain richer voxel representations. This artic...
Saved in:
| Published in: | IEEE robotics and automation letters Vol. 7; no. 4; pp. 11078 - 11085 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Occupancy grid maps (OGMs) are fundamental to most systems for autonomous robotic navigation. However, CPU-based implementations struggle to keep up with data rates from modern 3D lidar sensors, and provide little capacity for modern extensions which maintain richer voxel representations. This article presents Occupancy Homogenous Mapping (OHM), our open source, GPU-based OGM framework. We show how the algorithms can be mapped to GPU resources, resolving difficulties with contention to obtain a successful implementation. The implementation supports many modern OGM algorithms including Normal Distributions Transform-Occupancy Maps (NDT-OM), Normal Distributions Transform-Traversability Maps (NDT-TM), decay-rate and Truncated Sign Distance Function (TSDF). A thorough performance evaluation is presented based on tracked and quadruped Uncrewed Ground Vehicle (UGV) platforms and UAVs, and data sets from both outdoor and subterranean environments. The results demonstrate excellent performance improvements both offline, and for online processing in embedded platforms. Finally, we describe how OHM was a key enabler for the UGV navigation solution for our entry in the Defense Advanced Research Projects Agency (DARPA) Subterranean Challenge, which placed second at the Final Event. |
|---|---|
| AbstractList | Occupancy grid maps (OGMs) are fundamental to most systems for autonomous robotic navigation. However, CPU-based implementations struggle to keep up with data rates from modern 3D lidar sensors, and provide little capacity for modern extensions which maintain richer voxel representations. This article presents Occupancy Homogenous Mapping (OHM), our open source, GPU-based OGM framework. We show how the algorithms can be mapped to GPU resources, resolving difficulties with contention to obtain a successful implementation. The implementation supports many modern OGM algorithms including Normal Distributions Transform-Occupancy Maps (NDT-OM), Normal Distributions Transform-Traversability Maps (NDT-TM), decay-rate and Truncated Sign Distance Function (TSDF). A thorough performance evaluation is presented based on tracked and quadruped Uncrewed Ground Vehicle (UGV) platforms and UAVs, and data sets from both outdoor and subterranean environments. The results demonstrate excellent performance improvements both offline, and for online processing in embedded platforms. Finally, we describe how OHM was a key enabler for the UGV navigation solution for our entry in the Defense Advanced Research Projects Agency (DARPA) Subterranean Challenge, which placed second at the Final Event. |
| Author | Hines, Thomas Stepanas, Kazys Ruetz, Fabio Williams, Jason Hernandez, Emili |
| Author_xml | – sequence: 1 givenname: Kazys orcidid: 0000-0003-2183-9991 surname: Stepanas fullname: Stepanas, Kazys email: kazys.stepanas@csiro.au organization: Robotics and Autonomous Systems Group (RASG), CSIRO, Pullenvale, QLD, Australia – sequence: 2 givenname: Jason orcidid: 0000-0002-2416-075X surname: Williams fullname: Williams, Jason email: jason.williams@csiro.au organization: Robotics and Autonomous Systems Group (RASG), CSIRO, Pullenvale, QLD, Australia – sequence: 3 givenname: Emili orcidid: 0000-0002-6143-6161 surname: Hernandez fullname: Hernandez, Emili email: emili.hernandez@emesent.io organization: CSIRO RASG, Pullenvale, QLD, Australia – sequence: 4 givenname: Fabio orcidid: 0000-0002-3277-3134 surname: Ruetz fullname: Ruetz, Fabio email: fabio.ruetz@csiro.au organization: Robotics and Autonomous Systems Group (RASG), CSIRO, Pullenvale, QLD, Australia – sequence: 5 givenname: Thomas orcidid: 0000-0003-2820-8201 surname: Hines fullname: Hines, Thomas email: thomas.hines@csiro.au organization: Robotics and Autonomous Systems Group (RASG), CSIRO, Pullenvale, QLD, Australia |
| BookMark | eNp9kEtLw0AURgepYK3dC24CLlylziPzcleLtkJKROx6mFcgpSZxJl3035uaIuLC1b2L79zHuQSjuqk9ANcIzhCC8j5_m88wxHhGkGQoo2dgjAnnKeGMjX71F2Aa4xZCiCjmRNIxuCtW64dk-bpJHnX0Lims3be6todkrdtk6WsfdFc19RU4L_Uu-umpTsDm-el9sUrzYvmymOepxRJ1KS49owxSKUohrfbeG2OpNc5aKFxpHSWEOmS8x5bLTEhnNCVaGAy5dsKQCbgd5rah-dz72Kltsw91v1JhDpmQGUFZn2JDyoYmxuBLZavu-84u6GqnEFRHL6r3oo5e1MlLD8I_YBuqDx0O_yE3A1L13_zEpcgkzAT5AhHTbak |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1007_s11277_024_11337_3 crossref_primary_10_1002_rob_22189 crossref_primary_10_1109_LRA_2024_3417115 crossref_primary_10_1109_LRA_2024_3396056 crossref_primary_10_1080_10095020_2024_2377800 crossref_primary_10_1109_ACCESS_2024_3373004 crossref_primary_10_1109_LRA_2022_3230325 crossref_primary_10_1109_LRA_2023_3300227 |
| Cites_doi | 10.1007/s10514-012-9321-0 10.1609/aaai.v26i1.8377 10.1002/rob.21951 10.1109/LRA.2021.3101885 10.1016/j.eswa.2021.115077 10.1109/TITS.2014.2313562 10.1109/LRA.2017.2669376 10.1109/ACCESS.2021.3070694 10.1177/0278364913499415 10.1109/ICRA.2011.5979830 10.1002/rob.21657 10.1109/IVS.2010.5548091 10.1109/ROBOT.2010.5509725 10.3390/robotics10030103 10.1109/LRA.2021.3065302 10.1109/ISMAR.2011.6092378 10.1109/ICRA.2015.7139336 10.1109/IROS.2017.8202315 10.1109/ICRA40945.2020.9197072 10.1002/rob.21827 10.23919/DATE.2018.8342050 10.55417/fr.2022021 10.1109/2.30720 10.1145/237170.237269 10.1109/ACCESS.2021.3133100 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2022.3196145 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 11085 |
| ExternalDocumentID | 10_1109_LRA_2022_3196145 9849048 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency funderid: 10.13039/100000185 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-2fe6560598f89caeeebbc5cbdcc08dfcd5335d1bee2c79489dba53a8b207ad8b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845062300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Mon Jun 30 07:07:30 EDT 2025 Sat Nov 29 06:03:21 EST 2025 Tue Nov 18 22:41:06 EST 2025 Wed Aug 27 02:28:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-2fe6560598f89caeeebbc5cbdcc08dfcd5335d1bee2c79489dba53a8b207ad8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2416-075X 0000-0003-2820-8201 0000-0002-6143-6161 0000-0003-2183-9991 0000-0002-3277-3134 |
| PQID | 2706894314 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_LRA_2022_3196145 crossref_primary_10_1109_LRA_2022_3196145 proquest_journals_2706894314 ieee_primary_9849048 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 Zhou (ref31) 2018 ref15 ref11 ref10 (ref6) 2022 ref2 ref1 ref17 ref16 ref19 (ref8) 2022 (ref22) 2022 ref24 ref23 ref26 ref25 Hernndez (ref18) 2009 ref20 (ref32) 2022 (ref14) 2022 ref21 Maybeck (ref34) 1979 Amanatides (ref33) 1987; 87 ref28 ref27 ref29 ref7 (ref30) 2022 ref9 ref4 ref3 ref5 |
| References_xml | – year: 2022 ident: ref8 article-title: Occupancy homogeneous map – year: 2018 ident: ref31 article-title: Open3D: A modern library for 3D data processing – ident: ref7 doi: 10.1007/s10514-012-9321-0 – ident: ref13 doi: 10.1609/aaai.v26i1.8377 – start-page: 286 volume-title: Proc. Int. Federation Autom. Control year: 2009 ident: ref18 article-title: Occupancy grid mapping in an underwater structured environment – ident: ref21 doi: 10.1002/rob.21951 – volume-title: Stochastic Models, Estimation and Control year: 1979 ident: ref34 – ident: ref15 doi: 10.1109/LRA.2021.3101885 – ident: ref24 doi: 10.1016/j.eswa.2021.115077 – ident: ref11 doi: 10.1109/TITS.2014.2313562 – ident: ref4 doi: 10.1109/LRA.2017.2669376 – ident: ref17 doi: 10.1109/ACCESS.2021.3070694 – volume: 87 start-page: 3 year: 1987 ident: ref33 article-title: A fast voxel traversal algorithm for ray tracing publication-title: Eurographics – ident: ref2 doi: 10.1177/0278364913499415 – ident: ref23 doi: 10.1109/ICRA.2011.5979830 – ident: ref3 doi: 10.1002/rob.21657 – year: 2022 ident: ref14 article-title: Hovermap – ident: ref25 doi: 10.1109/IVS.2010.5548091 – ident: ref9 doi: 10.1109/ROBOT.2010.5509725 – ident: ref16 doi: 10.3390/robotics10030103 – ident: ref12 doi: 10.1109/LRA.2021.3065302 – ident: ref29 doi: 10.1109/ISMAR.2011.6092378 – ident: ref19 doi: 10.1109/ICRA.2015.7139336 – year: 2022 ident: ref30 article-title: Gpu-voxels – ident: ref5 doi: 10.1109/IROS.2017.8202315 – year: 2022 ident: ref6 article-title: DARPA SubTerranean Challenge – ident: ref10 doi: 10.1109/ICRA40945.2020.9197072 – ident: ref20 doi: 10.1002/rob.21827 – year: 2022 ident: ref22 article-title: Moveit – ident: ref26 doi: 10.23919/DATE.2018.8342050 – ident: ref27 doi: 10.55417/fr.2022021 – ident: ref1 doi: 10.1109/2.30720 – year: 2022 ident: ref32 article-title: nvblox – ident: ref28 doi: 10.1145/237170.237269 – ident: ref35 doi: 10.1109/ACCESS.2021.3133100 |
| SSID | ssj0001527395 |
| Score | 2.2964637 |
| Snippet | Occupancy grid maps (OGMs) are fundamental to most systems for autonomous robotic navigation. However, CPU-based implementations struggle to keep up with data... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11078 |
| SubjectTerms | Algorithms Autonomous navigation Autonomous vehicle navigation Decay rate Graphics processing units Laser radar Navigation Occupancy Performance evaluation Platforms Research projects Robot sensing systems Robots sensor fusion Sensors software tools for robot programming Three-dimensional displays Unmanned ground vehicles |
| Title | OHM: GPU Based Occupancy Map Generation |
| URI | https://ieeexplore.ieee.org/document/9849048 https://www.proquest.com/docview/2706894314 |
| Volume | 7 |
| WOSCitedRecordID | wos000845062300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrWUPggim3c0-knir0tqDrUUs9LZsJlkQpC19ePS3m-xua0ERvO0hWcI3k3kkmW8AroyaCMmkJpqHihiDx4gJ6lOSeinlKEXEUGXNJthgwMdjMSzB7aYWRmudPT7TTfuZ3eWrKa7sUVlL8EAYjStDmbEor9X6Pk-xTGIiXN9EuqL19NI2-R-lTatlnq1X2vI8WSuVH_Y3cyrdg_8t5xD2i-DRaefSPoKSnhzD3halYBWun3v9O-dxOHLujX9STs4ibCyo009mTk4ybWVxAqNu5_WhR4pmCASp8JaEptry5IQGSC4wMYuREkOUCtHlKkVl4rZQeVJrimaPcaFkEvoJl9RlieLSP4XKZDrRZ-AELkdOtQh9tNlhJDj1Ey81mZHwpdKsBq01UDEWTOG2YcV7nGUMrogNtLGFNi6grcHNZsYsZ8n4Y2zVQrkZV6BYg_paFnGxjRYxZW5kCeK94Pz3WRewa_-dv66rQ2U5X-lL2MGP5dti3oBy_7PTyPTkC3c2uVM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv6Y4ndoHQQS7tWmzJr5NcU7c5pANfAvNJQVBtrEP_36TtpsDRfCtDwkNv7vcR5L7HcClURMuI6ldzahyjcGLXBPUJ27iJ4Sh5PUIVdpsIup22dsb7xXgZlkLo7VOH5_pqv1M7_LVCOf2qKzGWciNxq3BOg1D4mXVWt8nKpZLjNPFXaTHa-3XhskACalaPfNtxdKK70mbqfywwKlbae7-b0F7sJOHj04jk_c-FPTwALZXSAVLcPXS6tw6j72Bc2c8lHIyHmFjQ51OPHYymmkrjUMYNB_69y03b4fgIuH-zCWJtkw51EDJOMZmMVIiRakQPaYSVCZyo8qXWhM0u4xxJWMaxEwSL4oVk8ERFIejoT4GJ_QYMqI5DdDmh3XOSBD7icmNeCCVjspQWwAlMOcKty0rPkSaM3hcGGiFhVbk0JbhejljnPFk_DG2ZKFcjstRLENlIQuRb6SpIJFXtxTxfnjy-6wL2Gz1O23Rfuo-n8KW_U_21q4Cxdlkrs9gAz9n79PJeaotX-WBu2k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OHM%3A+GPU+Based+Occupancy+Map+Generation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Stepanas%2C+Kazys&rft.au=Williams%2C+Jason&rft.au=Hernandez%2C+Emili&rft.au=Ruetz%2C+Fabio&rft.date=2022-10-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=7&rft.issue=4&rft.spage=11078&rft.epage=11085&rft_id=info:doi/10.1109%2FLRA.2022.3196145&rft.externalDocID=9849048 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |