Fault Classification in High-Dimensional Complex Processes Using Semi-Supervised Deep Convolutional Generative Models

In complex industrial processes, process fault detection and classification constitute an important task for reducing production costs and improving product quality. Most existing methods for fault classification assume that sufficient labeled data are available for training. However, label acquisit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 16; číslo 4; s. 2868 - 2877
Hlavní autoři: Ko, Taeyoung, Kim, Heeyoung
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In complex industrial processes, process fault detection and classification constitute an important task for reducing production costs and improving product quality. Most existing methods for fault classification assume that sufficient labeled data are available for training. However, label acquisition is costly and laborious in practice, whereas abundant unlabeled data are often available. To make effective use of a large amount of unlabeled data for fault classification, we propose in this article a new approach using semi-supervised deep generative models, allowing the complex relationship between high-dimensional process data and the process status to be modeled. In particular, to consider the temporal correlation and intervariable correlation in multivariate time series process data collected from multiple sensors, we propose two semi-supervised deep generative models incorporating convolutional neural networks. The proposed models are assessed on data from the Tennessee Eastman benchmark process. The results demonstrate the superior performances of the proposed models compared with competing methods.
AbstractList In complex industrial processes, process fault detection and classification constitute an important task for reducing production costs and improving product quality. Most existing methods for fault classification assume that sufficient labeled data are available for training. However, label acquisition is costly and laborious in practice, whereas abundant unlabeled data are often available. To make effective use of a large amount of unlabeled data for fault classification, we propose in this article a new approach using semi-supervised deep generative models, allowing the complex relationship between high-dimensional process data and the process status to be modeled. In particular, to consider the temporal correlation and intervariable correlation in multivariate time series process data collected from multiple sensors, we propose two semi-supervised deep generative models incorporating convolutional neural networks. The proposed models are assessed on data from the Tennessee Eastman benchmark process. The results demonstrate the superior performances of the proposed models compared with competing methods.
Author Ko, Taeyoung
Kim, Heeyoung
Author_xml – sequence: 1
  givenname: Taeyoung
  orcidid: 0000-0001-5797-9430
  surname: Ko
  fullname: Ko, Taeyoung
  email: tyko@kaist.ac.kr
  organization: Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
– sequence: 2
  givenname: Heeyoung
  orcidid: 0000-0001-6415-9887
  surname: Kim
  fullname: Kim, Heeyoung
  email: heeyoungkim@kaist.ac.kr
  organization: Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
BookMark eNp9kE1Lw0AQhhepYK3eBS8LnlP3I5vsHqW1H1BRaHsO22RSt6TZuJsU_fdubfHgwdMMw_sMM8816tW2BoTuKBlSStTjaj4fMkLVkKmYxjK5QH0auogQQXqhF4JGnBF-ha693xHCU8JVH3UT3VUtHlXae1OaXLfG1tjUeGa279HY7KH2YaIrPLL7poJP_OZsDt6Dx2tv6i1ewt5Ey64BdzAeCjwGaEK4Ptiqa0_oFGpwYfMB8IstoPI36LLUlYfbcx2g9eR5NZpFi9fpfPS0iHKmaBuxTSpIqpWmMWepFJKUtJCCaakVz3lJdZokuZRpEm9iUuQkLnl4nRepEEkZHhygh9PextmPDnyb7Wznwkk-YzwWgrEkOaaSUyp31nsHZZab9kdE67SpMkqyo-IsKM6OirOz4gCSP2DjzF67r_-Q-xNiAOA3LiVXQqX8G46NiOM
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TIM_2023_3331412
crossref_primary_10_1109_TNNLS_2023_3291371
crossref_primary_10_1109_TSM_2020_3027431
crossref_primary_10_1080_00207543_2022_2027040
crossref_primary_10_1109_TSM_2022_3216032
crossref_primary_10_1109_TIM_2022_3151946
crossref_primary_10_1109_TII_2022_3199374
crossref_primary_10_1109_TII_2020_3005965
crossref_primary_10_1016_j_isatra_2020_12_025
crossref_primary_10_1088_1361_6501_acabdb
crossref_primary_10_1109_TII_2022_3233650
crossref_primary_10_1016_j_compchemeng_2022_107884
crossref_primary_10_1109_TIM_2022_3184346
crossref_primary_10_3390_en16227680
crossref_primary_10_3390_min11101106
crossref_primary_10_1109_TII_2022_3202979
crossref_primary_10_1088_1361_6501_ad0683
crossref_primary_10_1016_j_ces_2025_122144
crossref_primary_10_1109_TII_2023_3242811
crossref_primary_10_1016_j_jmsy_2025_07_002
crossref_primary_10_1016_j_psep_2024_11_076
crossref_primary_10_1016_j_isatra_2020_10_066
crossref_primary_10_1109_TII_2024_3441652
crossref_primary_10_1016_j_ins_2024_121183
crossref_primary_10_1016_j_cie_2025_111393
crossref_primary_10_1016_j_ymssp_2023_110653
crossref_primary_10_1109_ACCESS_2020_3048000
crossref_primary_10_1109_JSEN_2022_3160762
crossref_primary_10_1002_cite_202100134
crossref_primary_10_1016_j_isatra_2023_09_027
crossref_primary_10_1016_j_ress_2023_109256
crossref_primary_10_1016_j_cie_2023_109286
crossref_primary_10_1109_TCST_2025_3527279
crossref_primary_10_1109_ACCESS_2020_3015875
crossref_primary_10_1109_TIM_2023_3305665
crossref_primary_10_1051_itmconf_20235603004
crossref_primary_10_1080_08982112_2023_2179404
crossref_primary_10_1109_TII_2021_3120686
crossref_primary_10_1109_TII_2020_3009106
crossref_primary_10_1109_TASE_2020_3043531
crossref_primary_10_1109_TII_2024_3372009
crossref_primary_10_1007_s10489_022_03422_6
crossref_primary_10_1016_j_eswa_2022_119377
crossref_primary_10_1109_TIM_2021_3127284
crossref_primary_10_1109_TIM_2023_3262249
crossref_primary_10_1016_j_enbuild_2024_114540
crossref_primary_10_1109_TII_2020_3048990
crossref_primary_10_1109_TSM_2020_3004483
crossref_primary_10_1016_j_engappai_2023_106316
crossref_primary_10_1109_TASE_2023_3317978
crossref_primary_10_1080_24725854_2021_2024925
crossref_primary_10_1016_j_eswa_2025_127080
crossref_primary_10_1080_24725854_2022_2106390
crossref_primary_10_1109_JSEN_2023_3344513
crossref_primary_10_1007_s10462_022_10230_4
crossref_primary_10_1109_TPAMI_2022_3225461
crossref_primary_10_1016_j_engappai_2023_107051
crossref_primary_10_1109_TIM_2025_3541712
Cites_doi 10.3390/s18082545
10.1016/j.compchemeng.2008.08.008
10.1016/j.compchemeng.2017.02.041
10.1109/ICMLA.2015.208
10.1016/j.eswa.2010.12.034
10.1109/TSM.2017.2676245
10.1002/aic.15062
10.1109/ACC.2016.7526751
10.1109/TSM.2018.2841416
10.1016/j.chemolab.2018.07.003
10.1016/j.chemolab.2015.10.019
10.1016/0098-1354(93)80018-I
10.1109/TII.2016.2571680
10.1016/j.compchemeng.2009.12.008
10.1016/j.neucom.2015.07.099
10.1016/j.chemolab.2014.08.008
10.1016/j.chemolab.2017.06.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2019.2941486
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 2877
ExternalDocumentID 10_1109_TII_2019_2941486
8839597
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: Korea Government (MSIT)
  grantid: 2018R1C1B6004511
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-2b7507a9a143278580f1d852a8a93c3f1a766c88764b40dc04f34863d7556f703
IEDL.DBID RIE
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510901000070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:16:12 EDT 2025
Sat Nov 29 04:16:49 EST 2025
Tue Nov 18 22:24:33 EST 2025
Wed Aug 27 02:40:24 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-2b7507a9a143278580f1d852a8a93c3f1a766c88764b40dc04f34863d7556f703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5797-9430
0000-0001-6415-9887
PQID 2345522660
PQPubID 85507
PageCount 10
ParticipantIDs proquest_journals_2345522660
crossref_citationtrail_10_1109_TII_2019_2941486
crossref_primary_10_1109_TII_2019_2941486
ieee_primary_8839597
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
kingma (ref15) 2014
goodfellow (ref17) 2016; 1
ref12
ref14
maaløe (ref16) 2016
ref11
ref10
ref21
ref2
ref1
ref19
kingma (ref24) 2013
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
glorot (ref23) 0
kulkarni (ref20) 0
kingma (ref22) 0
References_xml – ident: ref13
  doi: 10.3390/s18082545
– ident: ref2
  doi: 10.1016/j.compchemeng.2008.08.008
– ident: ref6
  doi: 10.1016/j.compchemeng.2017.02.041
– ident: ref5
  doi: 10.1109/ICMLA.2015.208
– ident: ref3
  doi: 10.1016/j.eswa.2010.12.034
– ident: ref18
  doi: 10.1109/TSM.2017.2676245
– ident: ref1
  doi: 10.1002/aic.15062
– year: 0
  ident: ref22
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Representations
– ident: ref7
  doi: 10.1109/ACC.2016.7526751
– volume: 1
  year: 2016
  ident: ref17
  publication-title: Deep Learning
– ident: ref19
  doi: 10.1109/TSM.2018.2841416
– ident: ref12
  doi: 10.1016/j.chemolab.2018.07.003
– ident: ref10
  doi: 10.1016/j.chemolab.2015.10.019
– start-page: 2539
  year: 0
  ident: ref20
  article-title: Deep convolutional inverse graphics network
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref21
  doi: 10.1016/0098-1354(93)80018-I
– year: 2016
  ident: ref16
  article-title: Auxiliary deep generative models
  publication-title: arXiv 1602 05473
– ident: ref11
  doi: 10.1109/TII.2016.2571680
– start-page: 249
  year: 0
  ident: ref23
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– start-page: 3581
  year: 2014
  ident: ref15
  article-title: Semi-supervised learning with deep generative models
  publication-title: Advances Neural Inform Process Syst
– ident: ref8
  doi: 10.1016/j.compchemeng.2009.12.008
– ident: ref4
  doi: 10.1016/j.neucom.2015.07.099
– year: 2013
  ident: ref24
  article-title: Auto-encoding variational bayes
  publication-title: arXiv preprint arXiv 1312 6114
– ident: ref9
  doi: 10.1016/j.chemolab.2014.08.008
– ident: ref14
  doi: 10.1016/j.chemolab.2017.06.010
SSID ssj0037039
Score 2.5024915
Snippet In complex industrial processes, process fault detection and classification constitute an important task for reducing production costs and improving product...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2868
SubjectTerms Artificial neural networks
Classification
Convolutional auxiliary deep generative model
Correlation
Data models
Data processing
Fault detection
Feature extraction
Multivariate analysis
multivariate time series
Production costs
semi-supervised convolutional variational autoencoder
Sensors
Task analysis
Tennessee Eastman process
Time series analysis
unlabeled data
Title Fault Classification in High-Dimensional Complex Processes Using Semi-Supervised Deep Convolutional Generative Models
URI https://ieeexplore.ieee.org/document/8839597
https://www.proquest.com/docview/2345522660
Volume 16
WOSCitedRecordID wos000510901000070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED5UfNAHf4vzF3nwRTBbmrRp8yjqUBARVNhbSdMUBrMb6zr8872k3VAUwZdSSgIl3_XuS3P3HcCFyDI03YxRIzLtRLU1zQQvaIHxRGi8ssgXCj_GT0_JYKCeV-BqWQtjrfXJZ7brbv1Zfj42tftV1kswmiMBXoXVOJZNrdbC6wq0XOW1UaOACs7E4kiSqd7rw4PL4VJdrkJk__JbCPI9VX44Yh9d-tv_e68d2GpZJLluYN-FFVvuweYXbcF9qPu6Hs2Ib3rp0oE8AmRYEpfZQW-dqH8jyEGcSxjZD9LWDNiK-DwC8mLfh_SlnjhvUtmc3Fo7wcHlvLVWnNqIVjuPSVxTtVF1AG_9u9ebe9r2WKCGq2BGeYaUIdZKI2_icRIlrAjyJOI60UoYUQQ6ltIgnDLMQpYbFhYCl1DkcRTJAhf9ENbKcWmPgEQyw8dIYELcNeKuTueJNYmKA26RJEnegd5i2VPTCpC7Phij1G9EmEoRqNQBlbZAdeByOWPSiG_8MXbfAbMc12LSgdMFsmn7dVYpF2HkeKdkx7_POoEN7vbVPkPnFNZm09qewbqZz4bV9Nwb3idhK9Um
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66dLDuYT_alWbrWj3sZVA1suRfehxtQ0OzMGgGfTOyLEMgc0Mdh_75u1OUsLFR6IsxRgKj73z3ybr7DuCLKks03VJwq0pDotqGl0rWvMZ4ogxeReILhcfZZJLf3ekfO3C2rYVxzvnkM3dOt_4sv7q3Hf0qG-QYzZEAv4Bd6pwVqrU2fleh7WqvjppEXEmhNoeSQg-moxFlcelzqWPk_-lfQch3VfnHFfv4Mnz7vDd7B28Cj2Tf1sC_hx3X7MPrP9QFD6Abmm6-ZL7tJSUEeQzYrGGU28EvSdZ_LcnByCnM3SMLVQOuZT6TgN26XzN-2y3In7SuYpfOLXBwswr2ilPXstXkMxm1VZu3H-Dn8Gp6cc1DlwVupY6WXJZIGjKjDTInmeVJLuqoyhNpcqOVVXVksjS1CGgal7GorIhrhUuoqixJ0hoX_RB6zX3jjoAlaYmPkcLEuG_EfZ2pcmdznUXSIU1KZR8Gm2UvbJAgp04Y88JvRYQuEKiCgCoCUH34up2xWMtvPDH2gIDZjguY9OF4g2wRvs-2kCpOiHmm4uP_Z53Cq-vp93ExHk1uPsGepF22z9c5ht7yoXOf4aVdLWftw4k3wt-lWthv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Classification+in+High-Dimensional+Complex+Processes+Using+Semi-Supervised+Deep+Convolutional+Generative+Models&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Ko%2C+Taeyoung&rft.au=Kim%2C+Heeyoung&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=16&rft.issue=4&rft.spage=2868&rft.epage=2877&rft_id=info:doi/10.1109%2FTII.2019.2941486&rft.externalDocID=8839597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon