Fault Classification in High-Dimensional Complex Processes Using Semi-Supervised Deep Convolutional Generative Models
In complex industrial processes, process fault detection and classification constitute an important task for reducing production costs and improving product quality. Most existing methods for fault classification assume that sufficient labeled data are available for training. However, label acquisit...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 16; číslo 4; s. 2868 - 2877 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In complex industrial processes, process fault detection and classification constitute an important task for reducing production costs and improving product quality. Most existing methods for fault classification assume that sufficient labeled data are available for training. However, label acquisition is costly and laborious in practice, whereas abundant unlabeled data are often available. To make effective use of a large amount of unlabeled data for fault classification, we propose in this article a new approach using semi-supervised deep generative models, allowing the complex relationship between high-dimensional process data and the process status to be modeled. In particular, to consider the temporal correlation and intervariable correlation in multivariate time series process data collected from multiple sensors, we propose two semi-supervised deep generative models incorporating convolutional neural networks. The proposed models are assessed on data from the Tennessee Eastman benchmark process. The results demonstrate the superior performances of the proposed models compared with competing methods. |
|---|---|
| AbstractList | In complex industrial processes, process fault detection and classification constitute an important task for reducing production costs and improving product quality. Most existing methods for fault classification assume that sufficient labeled data are available for training. However, label acquisition is costly and laborious in practice, whereas abundant unlabeled data are often available. To make effective use of a large amount of unlabeled data for fault classification, we propose in this article a new approach using semi-supervised deep generative models, allowing the complex relationship between high-dimensional process data and the process status to be modeled. In particular, to consider the temporal correlation and intervariable correlation in multivariate time series process data collected from multiple sensors, we propose two semi-supervised deep generative models incorporating convolutional neural networks. The proposed models are assessed on data from the Tennessee Eastman benchmark process. The results demonstrate the superior performances of the proposed models compared with competing methods. |
| Author | Ko, Taeyoung Kim, Heeyoung |
| Author_xml | – sequence: 1 givenname: Taeyoung orcidid: 0000-0001-5797-9430 surname: Ko fullname: Ko, Taeyoung email: tyko@kaist.ac.kr organization: Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea – sequence: 2 givenname: Heeyoung orcidid: 0000-0001-6415-9887 surname: Kim fullname: Kim, Heeyoung email: heeyoungkim@kaist.ac.kr organization: Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea |
| BookMark | eNp9kE1Lw0AQhhepYK3eBS8LnlP3I5vsHqW1H1BRaHsO22RSt6TZuJsU_fdubfHgwdMMw_sMM8816tW2BoTuKBlSStTjaj4fMkLVkKmYxjK5QH0auogQQXqhF4JGnBF-ha693xHCU8JVH3UT3VUtHlXae1OaXLfG1tjUeGa279HY7KH2YaIrPLL7poJP_OZsDt6Dx2tv6i1ewt5Ey64BdzAeCjwGaEK4Ptiqa0_oFGpwYfMB8IstoPI36LLUlYfbcx2g9eR5NZpFi9fpfPS0iHKmaBuxTSpIqpWmMWepFJKUtJCCaakVz3lJdZokuZRpEm9iUuQkLnl4nRepEEkZHhygh9PextmPDnyb7Wznwkk-YzwWgrEkOaaSUyp31nsHZZab9kdE67SpMkqyo-IsKM6OirOz4gCSP2DjzF67r_-Q-xNiAOA3LiVXQqX8G46NiOM |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1109_TIM_2023_3331412 crossref_primary_10_1109_TNNLS_2023_3291371 crossref_primary_10_1109_TSM_2020_3027431 crossref_primary_10_1080_00207543_2022_2027040 crossref_primary_10_1109_TSM_2022_3216032 crossref_primary_10_1109_TIM_2022_3151946 crossref_primary_10_1109_TII_2022_3199374 crossref_primary_10_1109_TII_2020_3005965 crossref_primary_10_1016_j_isatra_2020_12_025 crossref_primary_10_1088_1361_6501_acabdb crossref_primary_10_1109_TII_2022_3233650 crossref_primary_10_1016_j_compchemeng_2022_107884 crossref_primary_10_1109_TIM_2022_3184346 crossref_primary_10_3390_en16227680 crossref_primary_10_3390_min11101106 crossref_primary_10_1109_TII_2022_3202979 crossref_primary_10_1088_1361_6501_ad0683 crossref_primary_10_1016_j_ces_2025_122144 crossref_primary_10_1109_TII_2023_3242811 crossref_primary_10_1016_j_jmsy_2025_07_002 crossref_primary_10_1016_j_psep_2024_11_076 crossref_primary_10_1016_j_isatra_2020_10_066 crossref_primary_10_1109_TII_2024_3441652 crossref_primary_10_1016_j_ins_2024_121183 crossref_primary_10_1016_j_cie_2025_111393 crossref_primary_10_1016_j_ymssp_2023_110653 crossref_primary_10_1109_ACCESS_2020_3048000 crossref_primary_10_1109_JSEN_2022_3160762 crossref_primary_10_1002_cite_202100134 crossref_primary_10_1016_j_isatra_2023_09_027 crossref_primary_10_1016_j_ress_2023_109256 crossref_primary_10_1016_j_cie_2023_109286 crossref_primary_10_1109_TCST_2025_3527279 crossref_primary_10_1109_ACCESS_2020_3015875 crossref_primary_10_1109_TIM_2023_3305665 crossref_primary_10_1051_itmconf_20235603004 crossref_primary_10_1080_08982112_2023_2179404 crossref_primary_10_1109_TII_2021_3120686 crossref_primary_10_1109_TII_2020_3009106 crossref_primary_10_1109_TASE_2020_3043531 crossref_primary_10_1109_TII_2024_3372009 crossref_primary_10_1007_s10489_022_03422_6 crossref_primary_10_1016_j_eswa_2022_119377 crossref_primary_10_1109_TIM_2021_3127284 crossref_primary_10_1109_TIM_2023_3262249 crossref_primary_10_1016_j_enbuild_2024_114540 crossref_primary_10_1109_TII_2020_3048990 crossref_primary_10_1109_TSM_2020_3004483 crossref_primary_10_1016_j_engappai_2023_106316 crossref_primary_10_1109_TASE_2023_3317978 crossref_primary_10_1080_24725854_2021_2024925 crossref_primary_10_1016_j_eswa_2025_127080 crossref_primary_10_1080_24725854_2022_2106390 crossref_primary_10_1109_JSEN_2023_3344513 crossref_primary_10_1007_s10462_022_10230_4 crossref_primary_10_1109_TPAMI_2022_3225461 crossref_primary_10_1016_j_engappai_2023_107051 crossref_primary_10_1109_TIM_2025_3541712 |
| Cites_doi | 10.3390/s18082545 10.1016/j.compchemeng.2008.08.008 10.1016/j.compchemeng.2017.02.041 10.1109/ICMLA.2015.208 10.1016/j.eswa.2010.12.034 10.1109/TSM.2017.2676245 10.1002/aic.15062 10.1109/ACC.2016.7526751 10.1109/TSM.2018.2841416 10.1016/j.chemolab.2018.07.003 10.1016/j.chemolab.2015.10.019 10.1016/0098-1354(93)80018-I 10.1109/TII.2016.2571680 10.1016/j.compchemeng.2009.12.008 10.1016/j.neucom.2015.07.099 10.1016/j.chemolab.2014.08.008 10.1016/j.chemolab.2017.06.010 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2019.2941486 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 2877 |
| ExternalDocumentID | 10_1109_TII_2019_2941486 8839597 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 10.13039/501100003725 – fundername: Korea Government (MSIT) grantid: 2018R1C1B6004511 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-2b7507a9a143278580f1d852a8a93c3f1a766c88764b40dc04f34863d7556f703 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510901000070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:16:12 EDT 2025 Sat Nov 29 04:16:49 EST 2025 Tue Nov 18 22:24:33 EST 2025 Wed Aug 27 02:40:24 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-2b7507a9a143278580f1d852a8a93c3f1a766c88764b40dc04f34863d7556f703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5797-9430 0000-0001-6415-9887 |
| PQID | 2345522660 |
| PQPubID | 85507 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2345522660 crossref_citationtrail_10_1109_TII_2019_2941486 crossref_primary_10_1109_TII_2019_2941486 ieee_primary_8839597 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 kingma (ref15) 2014 goodfellow (ref17) 2016; 1 ref12 ref14 maaløe (ref16) 2016 ref11 ref10 ref21 ref2 ref1 ref19 kingma (ref24) 2013 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 glorot (ref23) 0 kulkarni (ref20) 0 kingma (ref22) 0 |
| References_xml | – ident: ref13 doi: 10.3390/s18082545 – ident: ref2 doi: 10.1016/j.compchemeng.2008.08.008 – ident: ref6 doi: 10.1016/j.compchemeng.2017.02.041 – ident: ref5 doi: 10.1109/ICMLA.2015.208 – ident: ref3 doi: 10.1016/j.eswa.2010.12.034 – ident: ref18 doi: 10.1109/TSM.2017.2676245 – ident: ref1 doi: 10.1002/aic.15062 – year: 0 ident: ref22 article-title: Adam: A method for stochastic optimization publication-title: Proc 3rd Int Conf Learn Representations – ident: ref7 doi: 10.1109/ACC.2016.7526751 – volume: 1 year: 2016 ident: ref17 publication-title: Deep Learning – ident: ref19 doi: 10.1109/TSM.2018.2841416 – ident: ref12 doi: 10.1016/j.chemolab.2018.07.003 – ident: ref10 doi: 10.1016/j.chemolab.2015.10.019 – start-page: 2539 year: 0 ident: ref20 article-title: Deep convolutional inverse graphics network publication-title: Proc Adv Neural Inf Process Syst – ident: ref21 doi: 10.1016/0098-1354(93)80018-I – year: 2016 ident: ref16 article-title: Auxiliary deep generative models publication-title: arXiv 1602 05473 – ident: ref11 doi: 10.1109/TII.2016.2571680 – start-page: 249 year: 0 ident: ref23 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – start-page: 3581 year: 2014 ident: ref15 article-title: Semi-supervised learning with deep generative models publication-title: Advances Neural Inform Process Syst – ident: ref8 doi: 10.1016/j.compchemeng.2009.12.008 – ident: ref4 doi: 10.1016/j.neucom.2015.07.099 – year: 2013 ident: ref24 article-title: Auto-encoding variational bayes publication-title: arXiv preprint arXiv 1312 6114 – ident: ref9 doi: 10.1016/j.chemolab.2014.08.008 – ident: ref14 doi: 10.1016/j.chemolab.2017.06.010 |
| SSID | ssj0037039 |
| Score | 2.5024915 |
| Snippet | In complex industrial processes, process fault detection and classification constitute an important task for reducing production costs and improving product... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2868 |
| SubjectTerms | Artificial neural networks Classification Convolutional auxiliary deep generative model Correlation Data models Data processing Fault detection Feature extraction Multivariate analysis multivariate time series Production costs semi-supervised convolutional variational autoencoder Sensors Task analysis Tennessee Eastman process Time series analysis unlabeled data |
| Title | Fault Classification in High-Dimensional Complex Processes Using Semi-Supervised Deep Convolutional Generative Models |
| URI | https://ieeexplore.ieee.org/document/8839597 https://www.proquest.com/docview/2345522660 |
| Volume | 16 |
| WOSCitedRecordID | wos000510901000070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED5UfNAHf4vzF3nwRTBbmrRp8yjqUBARVNhbSdMUBrMb6zr8872k3VAUwZdSSgIl3_XuS3P3HcCFyDI03YxRIzLtRLU1zQQvaIHxRGi8ssgXCj_GT0_JYKCeV-BqWQtjrfXJZ7brbv1Zfj42tftV1kswmiMBXoXVOJZNrdbC6wq0XOW1UaOACs7E4kiSqd7rw4PL4VJdrkJk__JbCPI9VX44Yh9d-tv_e68d2GpZJLluYN-FFVvuweYXbcF9qPu6Hs2Ib3rp0oE8AmRYEpfZQW-dqH8jyEGcSxjZD9LWDNiK-DwC8mLfh_SlnjhvUtmc3Fo7wcHlvLVWnNqIVjuPSVxTtVF1AG_9u9ebe9r2WKCGq2BGeYaUIdZKI2_icRIlrAjyJOI60UoYUQQ6ltIgnDLMQpYbFhYCl1DkcRTJAhf9ENbKcWmPgEQyw8dIYELcNeKuTueJNYmKA26RJEnegd5i2VPTCpC7Phij1G9EmEoRqNQBlbZAdeByOWPSiG_8MXbfAbMc12LSgdMFsmn7dVYpF2HkeKdkx7_POoEN7vbVPkPnFNZm09qewbqZz4bV9Nwb3idhK9Um |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66dLDuYT_alWbrWj3sZVA1suRfehxtQ0OzMGgGfTOyLEMgc0Mdh_75u1OUsLFR6IsxRgKj73z3ybr7DuCLKks03VJwq0pDotqGl0rWvMZ4ogxeReILhcfZZJLf3ekfO3C2rYVxzvnkM3dOt_4sv7q3Hf0qG-QYzZEAv4Bd6pwVqrU2fleh7WqvjppEXEmhNoeSQg-moxFlcelzqWPk_-lfQch3VfnHFfv4Mnz7vDd7B28Cj2Tf1sC_hx3X7MPrP9QFD6Abmm6-ZL7tJSUEeQzYrGGU28EvSdZ_LcnByCnM3SMLVQOuZT6TgN26XzN-2y3In7SuYpfOLXBwswr2ilPXstXkMxm1VZu3H-Dn8Gp6cc1DlwVupY6WXJZIGjKjDTInmeVJLuqoyhNpcqOVVXVksjS1CGgal7GorIhrhUuoqixJ0hoX_RB6zX3jjoAlaYmPkcLEuG_EfZ2pcmdznUXSIU1KZR8Gm2UvbJAgp04Y88JvRYQuEKiCgCoCUH34up2xWMtvPDH2gIDZjguY9OF4g2wRvs-2kCpOiHmm4uP_Z53Cq-vp93ExHk1uPsGepF22z9c5ht7yoXOf4aVdLWftw4k3wt-lWthv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Classification+in+High-Dimensional+Complex+Processes+Using+Semi-Supervised+Deep+Convolutional+Generative+Models&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Ko%2C+Taeyoung&rft.au=Kim%2C+Heeyoung&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=16&rft.issue=4&rft.spage=2868&rft.epage=2877&rft_id=info:doi/10.1109%2FTII.2019.2941486&rft.externalDocID=8839597 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |