An Intelligent Particle Filter With Adaptive M-H Resampling for Liquid-Level Estimation During Silicon Crystal Growth

During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because noise statistics are difficult to determine in measured values of the liquid level, a particle filter (PF) with unknown statistics has been pre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 70; s. 1 - 12
Hlavní autoři: Zhang, Xinyu, Liu, Ding, Yang, Yuan, Liang, Junli
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because noise statistics are difficult to determine in measured values of the liquid level, a particle filter (PF) with unknown statistics has been presented to estimate the liquid level. However, this approach leads to inaccurate results due to sample impoverishment. To alleviate this problem, we propose an intelligent PF method with an adaptive Metropolis-Hastings (M-H) resampling strategy. To accomplish this, we first design an M-H resampling strategy with two proposed distributions to re-sample low-weight particles. These distributions randomly select high-weight particles for the Gaussian mutations or high-weight and low-weight particles for crossover operations, so as to promote the movement of low-weight particles to high-probability regions. We also construct a self-adaptive function to further improve the overall particle quality, which is used to calculate the selection probability of these two proposed distributions according to the proportion of low-weight particles in all of the particles. Finally, the liquid level is estimated according to the particles after the modified resampling strategy is applied. A comparative evaluation of the proposed method with the adaptive genetic particle filter (AGPF) and the firefly algorithm intelligence optimized particle filter (FAIOPF) is conducted. Some results of the simulation and the practical experiment are presented; they indicate the proposed method offers accuracy improvements in the liquid-level estimation during the silicon crystal growth. More specifically, compared with the AGPF and the FAIOPF, the mean absolute error (MAE) of the proposed method has been reduced by approximately 53.3% and 99.5%, respectively.
AbstractList During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because noise statistics are difficult to determine in measured values of the liquid level, a particle filter (PF) with unknown statistics has been presented to estimate the liquid level. However, this approach leads to inaccurate results due to sample impoverishment. To alleviate this problem, we propose an intelligent PF method with an adaptive Metropolis-Hastings (M-H) resampling strategy. To accomplish this, we first design an M-H resampling strategy with two proposed distributions to re-sample low-weight particles. These distributions randomly select high-weight particles for the Gaussian mutations or high-weight and low-weight particles for crossover operations, so as to promote the movement of low-weight particles to high-probability regions. We also construct a self-adaptive function to further improve the overall particle quality, which is used to calculate the selection probability of these two proposed distributions according to the proportion of low-weight particles in all of the particles. Finally, the liquid level is estimated according to the particles after the modified resampling strategy is applied. A comparative evaluation of the proposed method with the adaptive genetic particle filter (AGPF) and the firefly algorithm intelligence optimized particle filter (FAIOPF) is conducted. Some results of the simulation and the practical experiment are presented; they indicate the proposed method offers accuracy improvements in the liquid-level estimation during the silicon crystal growth. More specifically, compared with the AGPF and the FAIOPF, the mean absolute error (MAE) of the proposed method has been reduced by approximately 53.3% and 99.5%, respectively.
During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because noise statistics are difficult to determine in measured values of the liquid level, a particle filter (PF) with unknown statistics has been presented to estimate the liquid level. However, this approach leads to inaccurate results due to sample impoverishment. To alleviate this problem, we propose an intelligent PF method with an adaptive Metropolis–Hastings (M-H) resampling strategy. To accomplish this, we first design an M-H resampling strategy with two proposed distributions to resample low-weight particles. These distributions randomly select high-weight particles for the Gaussian mutations or high-weight and low-weight particles for crossover operations, so as to promote the movement of low-weight particles to high-probability regions. We also construct a self-adaptive function to further improve the overall particle quality, which is used to calculate the selection probability of these two proposed distributions according to the proportion of low-weight particles in all of the particles. Finally, the liquid level is estimated according to the particles after the modified resampling strategy is applied. A comparative evaluation of the proposed method with the adaptive genetic particle filter (AGPF) and the firefly algorithm intelligence optimized particle filter (FAIOPF) is conducted. Some results of the simulation and the practical experiment are presented; they indicate the proposed method offers accuracy improvements in the liquid-level estimation during the silicon crystal growth. More specifically, compared with the AGPF and the FAIOPF, the mean absolute error (MAE) of the proposed method has been reduced by approximately 53.3% and 99.5%, respectively.
Author Zhang, Xinyu
Liang, Junli
Liu, Ding
Yang, Yuan
Author_xml – sequence: 1
  givenname: Xinyu
  orcidid: 0000-0002-9518-4644
  surname: Zhang
  fullname: Zhang, Xinyu
  email: xhyzzxy@126.com
  organization: National & Local Joint Engineering Research Center of Crystal Growth Equipment and System Integration, Xi'an University of Technology, Xi'an, China
– sequence: 2
  givenname: Ding
  orcidid: 0000-0002-2070-9661
  surname: Liu
  fullname: Liu, Ding
  email: liud@xaut.edu.cn
  organization: National & Local Joint Engineering Research Center of Crystal Growth Equipment and System Integration, Xi'an University of Technology, Xi'an, China
– sequence: 3
  givenname: Yuan
  orcidid: 0000-0001-5182-5238
  surname: Yang
  fullname: Yang, Yuan
  email: 787619869@qq.com
  organization: National & Local Joint Engineering Research Center of Crystal Growth Equipment and System Integration, Xi'an University of Technology, Xi'an, China
– sequence: 4
  givenname: Junli
  orcidid: 0000-0003-3306-2294
  surname: Liang
  fullname: Liang, Junli
  email: liangjunli@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kE1LAzEQhoNUsH7cBS8Bz1sn2U2yOZZqtVBR_MDjku7OtpG42yZZxX_v1ooHD56GGZ53hnkOyaBpGyTklMGIMdAXT7PbEQcOoxS4VBL2yJAJoRItJR-QIQDLE50JeUAOQ3gFACUzNSTduKGzJqJzdolNpPfGR1s6pFPrInr6YuOKjiuzjvYd6W1yQx8wmLe1s82S1q2nc7vpbJXM8R0dvQrRvplo24Zedn6LPFpny76d-M8QjaPXvv2Iq2OyXxsX8OSnHpHn6dXT5CaZ313PJuN5UnLNYsKNMumC6QWkqhJpnS1YZrToJ2UuK0gl5ovaQA0Kcq5KlgmNJq2qTCioFbL0iJzv9q59u-kwxOK17XzTnyx4JjnnItfQU3JHlb4NwWNdlDZ-fxG9sa5gUGwVF73iYqu4-FHcB-FPcO37__3nf5GzXcQi4i-uOYhc5OkX94mIuA
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TAES_2024_3415573
crossref_primary_10_1109_TIM_2024_3381301
crossref_primary_10_1109_TIM_2025_3544710
crossref_primary_10_1109_JSEN_2022_3176682
Cites_doi 10.1016/j.enbuild.2017.03.010
10.1016/j.asr.2017.12.016
10.1016/j.dsp.2018.06.015
10.1631/FITEE.1500199
10.1080/00031305.1995.10476177
10.1109/TIE.2018.2866057
10.1177/1550147719841273
10.1049/iet-cvi.2016.0201
10.1109/ChiCC.2016.7554133
10.3390/s17122707
10.1109/REG5.2004.1300186
10.1049/ip-f-2.1993.0015
10.1007/s00034-018-0927-0
10.1109/TIE.2016.2522382
10.1023/A:1008935410038
10.1016/j.sigpro.2011.12.019
10.1007/s00521-018-3525-y
10.1063/1.1699114
10.1016/j.dsp.2018.07.007
10.23919/ChiCC.2018.8483093
10.1109/TSMC.2019.2922305
10.1109/TIE.2018.2854557
10.1109/TAC.2018.2879765
10.1093/biomet/57.1.97
10.1109/TIE.2015.2399396
10.5194/hess-23-1163-2019
10.1109/TIM.2019.2930709
10.1109/78.978374
10.1109/MSP.2014.2330626
10.1109/19.997810
10.1016/j.cag.2017.07.023
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2020.3026760
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2020_3026760
9205858
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation (NNSF) of China
  grantid: 62003261; 61671374; 61871318
  funderid: 10.13039/501100001809
– fundername: Key Program of National Natural Science Foundation of China
  grantid: 61533014
  funderid: 10.13039/501100001809
– fundername: Natural Science Basic Research Plan in Shaanxi Province of China
  grantid: 2020JQ-645
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-2a7a3b19b037d53f4b14a95b19c86d036e8bfa0f070827c1459ea3dd4570f7e13
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591842200066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:18:44 EDT 2025
Sat Nov 29 04:38:00 EST 2025
Tue Nov 18 22:18:53 EST 2025
Wed Aug 27 02:44:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-2a7a3b19b037d53f4b14a95b19c86d036e8bfa0f070827c1459ea3dd4570f7e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3306-2294
0000-0001-5182-5238
0000-0002-9518-4644
0000-0002-2070-9661
PQID 2462225890
PQPubID 85462
PageCount 12
ParticipantIDs crossref_primary_10_1109_TIM_2020_3026760
ieee_primary_9205858
proquest_journals_2462225890
crossref_citationtrail_10_1109_TIM_2020_3026760
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1016/j.enbuild.2017.03.010
– ident: ref17
  doi: 10.1016/j.asr.2017.12.016
– ident: ref19
  doi: 10.1016/j.dsp.2018.06.015
– ident: ref10
  doi: 10.1631/FITEE.1500199
– ident: ref30
  doi: 10.1080/00031305.1995.10476177
– ident: ref26
  doi: 10.1109/TIE.2018.2866057
– ident: ref5
  doi: 10.1177/1550147719841273
– ident: ref14
  doi: 10.1049/iet-cvi.2016.0201
– ident: ref7
  doi: 10.1109/ChiCC.2016.7554133
– ident: ref12
  doi: 10.3390/s17122707
– ident: ref31
  doi: 10.1109/REG5.2004.1300186
– ident: ref11
  doi: 10.1049/ip-f-2.1993.0015
– ident: ref15
  doi: 10.1007/s00034-018-0927-0
– ident: ref18
  doi: 10.1109/TIE.2016.2522382
– ident: ref24
  doi: 10.1023/A:1008935410038
– ident: ref27
  doi: 10.1016/j.sigpro.2011.12.019
– ident: ref3
  doi: 10.1007/s00521-018-3525-y
– ident: ref28
  doi: 10.1063/1.1699114
– ident: ref21
  doi: 10.1016/j.dsp.2018.07.007
– ident: ref8
  doi: 10.23919/ChiCC.2018.8483093
– ident: ref1
  doi: 10.1109/TSMC.2019.2922305
– ident: ref20
  doi: 10.1109/TIE.2018.2854557
– ident: ref2
  doi: 10.1109/TAC.2018.2879765
– ident: ref29
  doi: 10.1093/biomet/57.1.97
– ident: ref16
  doi: 10.1109/TIE.2015.2399396
– ident: ref4
  doi: 10.5194/hess-23-1163-2019
– ident: ref6
  doi: 10.1109/TIM.2019.2930709
– ident: ref25
  doi: 10.1109/78.978374
– ident: ref9
  doi: 10.1109/MSP.2014.2330626
– ident: ref23
  doi: 10.1109/19.997810
– ident: ref22
  doi: 10.1016/j.cag.2017.07.023
SSID ssj0007647
Score 2.405181
Snippet During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive filters
Adaptive Metropolis–Hastings (M-H) Resampling
Algorithms
Atmospheric measurements
Crossovers
Crystal growth
Estimation
Furnaces
Heuristic methods
intelligent particle filter (PF)
Liquid levels
liquid-level detection
Liquids
Low weight
Mutation
Noise measurement
Resampling
Silicon
silicon crystal growth
Single crystals
Strategy
Title An Intelligent Particle Filter With Adaptive M-H Resampling for Liquid-Level Estimation During Silicon Crystal Growth
URI https://ieeexplore.ieee.org/document/9205858
https://www.proquest.com/docview/2462225890
Volume 70
WOSCitedRecordID wos000591842200066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EB6aJsX3XZbdOilUGdty7as47LNNoFNCGlCcjN6jBPD4qS73kL_fUey1y2kBHozRgLBp5n5RvMC-JQqZwhKGUSp4UEirCaRQgy41RK1zAxaP7VkJs7P89tbebEBX_paGET0yWd45D59LN8-mJV7KhvJOCR2m2_CphBZW6vVa12RJW1_zIgEmFjBOiQZytHV6Rk5gjH5p27ckm9G-ccE-ZkqTxSxty7T1_93rjfwqmORbNzCvgsbWO_By796C-7Bts_tNMt9WI1rdtp33mzYRXdb2LRyoXJ2UzX3bGzVo9N87Cw4YZe4VC7TvL5jxGnZrPqxqmwwc_lF7Jh0QlvuyL76Ekf2vZrTdarZZPGLqOacfSPPvrk_gOvp8dXkJOimLQQmllETxEooriOpQy5systER4mSKf0xeWbJ0GGuSxWWpCPyWJgoSSUqbm2SirAUGPFD2KofanwLjEhTiJbrnOhRkqZKGWnRGk3uCdco8gGM1gAUpmtF7iZizAvvkoSyIMgKB1nRQTaAz_2Ox7YNxzNr9x1E_boOnQEM1xgXnZwuizjJnMOby_Ddv3e9h53YZbH4R5chbDWLFX6AF-ZnUy0XH_0V_A2Vcdkc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NAQIe-NhAKwzwAy9IZHVip44fq7HSirSaoIi9Rf64sEhVtrUpEv89tpMGJBASb1FkS5Z-vrvf-b4A3qTKG4JSRnFqWMSF1U6kECNmtUQtRwZtmFqSi8Uiu7iQ53vwrq-FQcSQfIYn_jPE8u2V2fqnsqFMqGO32S24nXKe0LZaq9e7YsTbDpmxE2HHC3ZBSSqHy9ncuYKJ81D9wKXQjvKXEQpTVf5QxcG-TB7938kew8OOR5JxC_wT2MP6AB781l3wAO6G7E6zOYTtuCazvvdmQ867-0ImlQ-Wk69Vc0nGVl173Ufm0ZR8wo3yueb1N-JYLcmrm21lo9xnGJEzpxXagkfyPhQ5ks_Vyl2ompyufziyuSIfnG_fXD6FL5Oz5ek06uYtRCaRcRMlSiimY6kpEzZlJdcxVzJ1f0w2ss7UYaZLRUunJbJEmJinEhWzlqeClgJj9gz266saj4A42kTRMp05gsTTVCkjLVqjnYPCNIpsAMMdAIXpmpH7mRirIjglVBYOssJDVnSQDeBtv-O6bcTxj7WHHqJ-XYfOAI53GBedpG6KhI-8y5tJ-vzvu17Dvelynhf5bPHxBdxPfE5LeII5hv1mvcWXcMd8b6rN-lW4jj8BCHTcYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+Particle+Filter+With+Adaptive+M-H+Resampling+for+Liquid-Level+Estimation+During+Silicon+Crystal+Growth&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Xinyu&rft.au=Liu%2C+Ding&rft.au=Yang%2C+Yuan&rft.au=Liang%2C+Junli&rft.date=2021&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=70&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2020.3026760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2020_3026760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon