An Intelligent Particle Filter With Adaptive M-H Resampling for Liquid-Level Estimation During Silicon Crystal Growth
During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because noise statistics are difficult to determine in measured values of the liquid level, a particle filter (PF) with unknown statistics has been pre...
Uloženo v:
| Vydáno v: | IEEE transactions on instrumentation and measurement Ročník 70; s. 1 - 12 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because noise statistics are difficult to determine in measured values of the liquid level, a particle filter (PF) with unknown statistics has been presented to estimate the liquid level. However, this approach leads to inaccurate results due to sample impoverishment. To alleviate this problem, we propose an intelligent PF method with an adaptive Metropolis-Hastings (M-H) resampling strategy. To accomplish this, we first design an M-H resampling strategy with two proposed distributions to re-sample low-weight particles. These distributions randomly select high-weight particles for the Gaussian mutations or high-weight and low-weight particles for crossover operations, so as to promote the movement of low-weight particles to high-probability regions. We also construct a self-adaptive function to further improve the overall particle quality, which is used to calculate the selection probability of these two proposed distributions according to the proportion of low-weight particles in all of the particles. Finally, the liquid level is estimated according to the particles after the modified resampling strategy is applied. A comparative evaluation of the proposed method with the adaptive genetic particle filter (AGPF) and the firefly algorithm intelligence optimized particle filter (FAIOPF) is conducted. Some results of the simulation and the practical experiment are presented; they indicate the proposed method offers accuracy improvements in the liquid-level estimation during the silicon crystal growth. More specifically, compared with the AGPF and the FAIOPF, the mean absolute error (MAE) of the proposed method has been reduced by approximately 53.3% and 99.5%, respectively. |
|---|---|
| AbstractList | During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because noise statistics are difficult to determine in measured values of the liquid level, a particle filter (PF) with unknown statistics has been presented to estimate the liquid level. However, this approach leads to inaccurate results due to sample impoverishment. To alleviate this problem, we propose an intelligent PF method with an adaptive Metropolis-Hastings (M-H) resampling strategy. To accomplish this, we first design an M-H resampling strategy with two proposed distributions to re-sample low-weight particles. These distributions randomly select high-weight particles for the Gaussian mutations or high-weight and low-weight particles for crossover operations, so as to promote the movement of low-weight particles to high-probability regions. We also construct a self-adaptive function to further improve the overall particle quality, which is used to calculate the selection probability of these two proposed distributions according to the proportion of low-weight particles in all of the particles. Finally, the liquid level is estimated according to the particles after the modified resampling strategy is applied. A comparative evaluation of the proposed method with the adaptive genetic particle filter (AGPF) and the firefly algorithm intelligence optimized particle filter (FAIOPF) is conducted. Some results of the simulation and the practical experiment are presented; they indicate the proposed method offers accuracy improvements in the liquid-level estimation during the silicon crystal growth. More specifically, compared with the AGPF and the FAIOPF, the mean absolute error (MAE) of the proposed method has been reduced by approximately 53.3% and 99.5%, respectively. During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because noise statistics are difficult to determine in measured values of the liquid level, a particle filter (PF) with unknown statistics has been presented to estimate the liquid level. However, this approach leads to inaccurate results due to sample impoverishment. To alleviate this problem, we propose an intelligent PF method with an adaptive Metropolis–Hastings (M-H) resampling strategy. To accomplish this, we first design an M-H resampling strategy with two proposed distributions to resample low-weight particles. These distributions randomly select high-weight particles for the Gaussian mutations or high-weight and low-weight particles for crossover operations, so as to promote the movement of low-weight particles to high-probability regions. We also construct a self-adaptive function to further improve the overall particle quality, which is used to calculate the selection probability of these two proposed distributions according to the proportion of low-weight particles in all of the particles. Finally, the liquid level is estimated according to the particles after the modified resampling strategy is applied. A comparative evaluation of the proposed method with the adaptive genetic particle filter (AGPF) and the firefly algorithm intelligence optimized particle filter (FAIOPF) is conducted. Some results of the simulation and the practical experiment are presented; they indicate the proposed method offers accuracy improvements in the liquid-level estimation during the silicon crystal growth. More specifically, compared with the AGPF and the FAIOPF, the mean absolute error (MAE) of the proposed method has been reduced by approximately 53.3% and 99.5%, respectively. |
| Author | Zhang, Xinyu Liang, Junli Liu, Ding Yang, Yuan |
| Author_xml | – sequence: 1 givenname: Xinyu orcidid: 0000-0002-9518-4644 surname: Zhang fullname: Zhang, Xinyu email: xhyzzxy@126.com organization: National & Local Joint Engineering Research Center of Crystal Growth Equipment and System Integration, Xi'an University of Technology, Xi'an, China – sequence: 2 givenname: Ding orcidid: 0000-0002-2070-9661 surname: Liu fullname: Liu, Ding email: liud@xaut.edu.cn organization: National & Local Joint Engineering Research Center of Crystal Growth Equipment and System Integration, Xi'an University of Technology, Xi'an, China – sequence: 3 givenname: Yuan orcidid: 0000-0001-5182-5238 surname: Yang fullname: Yang, Yuan email: 787619869@qq.com organization: National & Local Joint Engineering Research Center of Crystal Growth Equipment and System Integration, Xi'an University of Technology, Xi'an, China – sequence: 4 givenname: Junli orcidid: 0000-0003-3306-2294 surname: Liang fullname: Liang, Junli email: liangjunli@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China |
| BookMark | eNp9kE1LAzEQhoNUsH7cBS8Bz1sn2U2yOZZqtVBR_MDjku7OtpG42yZZxX_v1ooHD56GGZ53hnkOyaBpGyTklMGIMdAXT7PbEQcOoxS4VBL2yJAJoRItJR-QIQDLE50JeUAOQ3gFACUzNSTduKGzJqJzdolNpPfGR1s6pFPrInr6YuOKjiuzjvYd6W1yQx8wmLe1s82S1q2nc7vpbJXM8R0dvQrRvplo24Zedn6LPFpny76d-M8QjaPXvv2Iq2OyXxsX8OSnHpHn6dXT5CaZ313PJuN5UnLNYsKNMumC6QWkqhJpnS1YZrToJ2UuK0gl5ovaQA0Kcq5KlgmNJq2qTCioFbL0iJzv9q59u-kwxOK17XzTnyx4JjnnItfQU3JHlb4NwWNdlDZ-fxG9sa5gUGwVF73iYqu4-FHcB-FPcO37__3nf5GzXcQi4i-uOYhc5OkX94mIuA |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TAES_2024_3415573 crossref_primary_10_1109_TIM_2024_3381301 crossref_primary_10_1109_TIM_2025_3544710 crossref_primary_10_1109_JSEN_2022_3176682 |
| Cites_doi | 10.1016/j.enbuild.2017.03.010 10.1016/j.asr.2017.12.016 10.1016/j.dsp.2018.06.015 10.1631/FITEE.1500199 10.1080/00031305.1995.10476177 10.1109/TIE.2018.2866057 10.1177/1550147719841273 10.1049/iet-cvi.2016.0201 10.1109/ChiCC.2016.7554133 10.3390/s17122707 10.1109/REG5.2004.1300186 10.1049/ip-f-2.1993.0015 10.1007/s00034-018-0927-0 10.1109/TIE.2016.2522382 10.1023/A:1008935410038 10.1016/j.sigpro.2011.12.019 10.1007/s00521-018-3525-y 10.1063/1.1699114 10.1016/j.dsp.2018.07.007 10.23919/ChiCC.2018.8483093 10.1109/TSMC.2019.2922305 10.1109/TIE.2018.2854557 10.1109/TAC.2018.2879765 10.1093/biomet/57.1.97 10.1109/TIE.2015.2399396 10.5194/hess-23-1163-2019 10.1109/TIM.2019.2930709 10.1109/78.978374 10.1109/MSP.2014.2330626 10.1109/19.997810 10.1016/j.cag.2017.07.023 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2020.3026760 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TIM_2020_3026760 9205858 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation (NNSF) of China grantid: 62003261; 61671374; 61871318 funderid: 10.13039/501100001809 – fundername: Key Program of National Natural Science Foundation of China grantid: 61533014 funderid: 10.13039/501100001809 – fundername: Natural Science Basic Research Plan in Shaanxi Province of China grantid: 2020JQ-645 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-2a7a3b19b037d53f4b14a95b19c86d036e8bfa0f070827c1459ea3dd4570f7e13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591842200066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:18:44 EDT 2025 Sat Nov 29 04:38:00 EST 2025 Tue Nov 18 22:18:53 EST 2025 Wed Aug 27 02:44:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-2a7a3b19b037d53f4b14a95b19c86d036e8bfa0f070827c1459ea3dd4570f7e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3306-2294 0000-0001-5182-5238 0000-0002-9518-4644 0000-0002-2070-9661 |
| PQID | 2462225890 |
| PQPubID | 85462 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2020_3026760 ieee_primary_9205858 proquest_journals_2462225890 crossref_citationtrail_10_1109_TIM_2020_3026760 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref13 doi: 10.1016/j.enbuild.2017.03.010 – ident: ref17 doi: 10.1016/j.asr.2017.12.016 – ident: ref19 doi: 10.1016/j.dsp.2018.06.015 – ident: ref10 doi: 10.1631/FITEE.1500199 – ident: ref30 doi: 10.1080/00031305.1995.10476177 – ident: ref26 doi: 10.1109/TIE.2018.2866057 – ident: ref5 doi: 10.1177/1550147719841273 – ident: ref14 doi: 10.1049/iet-cvi.2016.0201 – ident: ref7 doi: 10.1109/ChiCC.2016.7554133 – ident: ref12 doi: 10.3390/s17122707 – ident: ref31 doi: 10.1109/REG5.2004.1300186 – ident: ref11 doi: 10.1049/ip-f-2.1993.0015 – ident: ref15 doi: 10.1007/s00034-018-0927-0 – ident: ref18 doi: 10.1109/TIE.2016.2522382 – ident: ref24 doi: 10.1023/A:1008935410038 – ident: ref27 doi: 10.1016/j.sigpro.2011.12.019 – ident: ref3 doi: 10.1007/s00521-018-3525-y – ident: ref28 doi: 10.1063/1.1699114 – ident: ref21 doi: 10.1016/j.dsp.2018.07.007 – ident: ref8 doi: 10.23919/ChiCC.2018.8483093 – ident: ref1 doi: 10.1109/TSMC.2019.2922305 – ident: ref20 doi: 10.1109/TIE.2018.2854557 – ident: ref2 doi: 10.1109/TAC.2018.2879765 – ident: ref29 doi: 10.1093/biomet/57.1.97 – ident: ref16 doi: 10.1109/TIE.2015.2399396 – ident: ref4 doi: 10.5194/hess-23-1163-2019 – ident: ref6 doi: 10.1109/TIM.2019.2930709 – ident: ref25 doi: 10.1109/78.978374 – ident: ref9 doi: 10.1109/MSP.2014.2330626 – ident: ref23 doi: 10.1109/19.997810 – ident: ref22 doi: 10.1016/j.cag.2017.07.023 |
| SSID | ssj0007647 |
| Score | 2.405181 |
| Snippet | During the growth of silicon single crystals, it is critical to detect the liquid level of the silicon melt to ensure their high-quality production. Because... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive filters Adaptive Metropolis–Hastings (M-H) Resampling Algorithms Atmospheric measurements Crossovers Crystal growth Estimation Furnaces Heuristic methods intelligent particle filter (PF) Liquid levels liquid-level detection Liquids Low weight Mutation Noise measurement Resampling Silicon silicon crystal growth Single crystals Strategy |
| Title | An Intelligent Particle Filter With Adaptive M-H Resampling for Liquid-Level Estimation During Silicon Crystal Growth |
| URI | https://ieeexplore.ieee.org/document/9205858 https://www.proquest.com/docview/2462225890 |
| Volume | 70 |
| WOSCitedRecordID | wos000591842200066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EB6aJsX3XZbdOilUGdty7as47LNNoFNCGlCcjN6jBPD4qS73kL_fUey1y2kBHozRgLBp5n5RvMC-JQqZwhKGUSp4UEirCaRQgy41RK1zAxaP7VkJs7P89tbebEBX_paGET0yWd45D59LN8-mJV7KhvJOCR2m2_CphBZW6vVa12RJW1_zIgEmFjBOiQZytHV6Rk5gjH5p27ckm9G-ccE-ZkqTxSxty7T1_93rjfwqmORbNzCvgsbWO_By796C-7Bts_tNMt9WI1rdtp33mzYRXdb2LRyoXJ2UzX3bGzVo9N87Cw4YZe4VC7TvL5jxGnZrPqxqmwwc_lF7Jh0QlvuyL76Ekf2vZrTdarZZPGLqOacfSPPvrk_gOvp8dXkJOimLQQmllETxEooriOpQy5systER4mSKf0xeWbJ0GGuSxWWpCPyWJgoSSUqbm2SirAUGPFD2KofanwLjEhTiJbrnOhRkqZKGWnRGk3uCdco8gGM1gAUpmtF7iZizAvvkoSyIMgKB1nRQTaAz_2Ox7YNxzNr9x1E_boOnQEM1xgXnZwuizjJnMOby_Ddv3e9h53YZbH4R5chbDWLFX6AF-ZnUy0XH_0V_A2Vcdkc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NAQIe-NhAKwzwAy9IZHVip44fq7HSirSaoIi9Rf64sEhVtrUpEv89tpMGJBASb1FkS5Z-vrvf-b4A3qTKG4JSRnFqWMSF1U6kECNmtUQtRwZtmFqSi8Uiu7iQ53vwrq-FQcSQfIYn_jPE8u2V2fqnsqFMqGO32S24nXKe0LZaq9e7YsTbDpmxE2HHC3ZBSSqHy9ncuYKJ81D9wKXQjvKXEQpTVf5QxcG-TB7938kew8OOR5JxC_wT2MP6AB781l3wAO6G7E6zOYTtuCazvvdmQ867-0ImlQ-Wk69Vc0nGVl173Ufm0ZR8wo3yueb1N-JYLcmrm21lo9xnGJEzpxXagkfyPhQ5ks_Vyl2ompyufziyuSIfnG_fXD6FL5Oz5ek06uYtRCaRcRMlSiimY6kpEzZlJdcxVzJ1f0w2ss7UYaZLRUunJbJEmJinEhWzlqeClgJj9gz266saj4A42kTRMp05gsTTVCkjLVqjnYPCNIpsAMMdAIXpmpH7mRirIjglVBYOssJDVnSQDeBtv-O6bcTxj7WHHqJ-XYfOAI53GBedpG6KhI-8y5tJ-vzvu17Dvelynhf5bPHxBdxPfE5LeII5hv1mvcWXcMd8b6rN-lW4jj8BCHTcYw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+Particle+Filter+With+Adaptive+M-H+Resampling+for+Liquid-Level+Estimation+During+Silicon+Crystal+Growth&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Xinyu&rft.au=Liu%2C+Ding&rft.au=Yang%2C+Yuan&rft.au=Liang%2C+Junli&rft.date=2021&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=70&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2020.3026760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2020_3026760 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |