A dynamic space reduction ant colony optimization for capacitated vehicle routing problem

As a typical meta-heuristic algorithm, ant colony optimization (ACO) has achieved good results in solving discrete combinatorial optimization problems. However, it suffers from poor solutions and the drawback of easily being trapped in local optima. This paper presents a new type of ACO called “dyna...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Soft computing (Berlin, Germany) Ročník 26; číslo 17; s. 8745 - 8756
Hlavní autori: Cai, Jinsi, Wang, Peng, Sun, Siqing, Dong, Huachao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Predmet:
ISSN:1432-7643, 1433-7479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:As a typical meta-heuristic algorithm, ant colony optimization (ACO) has achieved good results in solving discrete combinatorial optimization problems. However, it suffers from poor solutions and the drawback of easily being trapped in local optima. This paper presents a new type of ACO called “dynamic space reduction ant colony optimization” (DSRACO) to solve the capacitated vehicle routing problem, which is a typical nondeterministic polynomial-hard optimization problem. In DSRACO, ACO is integrated with a unique dynamic space reduction method, an elite enhanced mechanism, and large-scale neighborhood search methods to improve the quality of the solution. The performance of DSRACO is evaluated using 73 well-known benchmark instances in comparison with ACO and three other cutting-edge algorithms. The experimental results show that DSRACO can solve CVRP with a satisfactory result.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-022-07198-2