Deep Learning-Based Automated Extraction of Anthropometric Measurements From a Single 3-D Scan

The appearance of 3-D scanners, generating point clouds, has revolutionized anthropometric data collection systems and their applications. Anthropometric data are of paramount importance in several applications, including fashion design, medical diagnosis, and virtual character modeling, all of whic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 70; s. 1 - 14
Hlavní autoři: Kaashki, Nastaran Nourbakhsh, Hu, Pengpeng, Munteanu, Adrian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The appearance of 3-D scanners, generating point clouds, has revolutionized anthropometric data collection systems and their applications. Anthropometric data are of paramount importance in several applications, including fashion design, medical diagnosis, and virtual character modeling, all of which require a fully automatic anthropometric measurement extraction method. 3-D-based methods for anthropometric measurement extraction becomes more and more popular due to their improved accuracy compared to classical image-based approaches. Existing 3-D methods can be mainly classified into two categories: landmark and template-based methods. The former is highly dependent on the estimated landmarks which are highly sensitive to noise in the input or missing data. The latter has to iteratively solve an objective function to deform a body template to fit the scan, which is time-consuming while being also sensitive to noise and missing data. In this study, we propose the first approach for automatic contact-less anthropometric measurements extraction based on deep-learning (AM-DL). A novel module dubbed multiscale EdgeConv is proposed to learn local features from point clouds at multiple scales. Multiscale EdgeConv can be directly integrated with other neural networks for various tasks, e.g., classification of point clouds. We exploit this module to design an encoder-decoder architecture that learns to deform a template model to fit a given scan. The measurement values are then calculated on the deformed template model. To evaluate the proposed method, 27 female and 25 male subjects were scanned using a photogrametry-based scanner and measured by an experienced tailor. Experimental results on the synthetic ModelNet40 dataset and on the real scans demonstrate that the proposed method outperforms state-of-the-art methods, and performs sufficiently close to a professional tailor.
AbstractList The appearance of 3-D scanners, generating point clouds, has revolutionized anthropometric data collection systems and their applications. Anthropometric data are of paramount importance in several applications, including fashion design, medical diagnosis, and virtual character modeling, all of which require a fully automatic anthropometric measurement extraction method. 3-D-based methods for anthropometric measurement extraction becomes more and more popular due to their improved accuracy compared to classical image-based approaches. Existing 3-D methods can be mainly classified into two categories: landmark and template-based methods. The former is highly dependent on the estimated landmarks which are highly sensitive to noise in the input or missing data. The latter has to iteratively solve an objective function to deform a body template to fit the scan, which is time-consuming while being also sensitive to noise and missing data. In this study, we propose the first approach for automatic contact-less anthropometric measurements extraction based on deep-learning (AM-DL). A novel module dubbed multiscale EdgeConv is proposed to learn local features from point clouds at multiple scales. Multiscale EdgeConv can be directly integrated with other neural networks for various tasks, e.g., classification of point clouds. We exploit this module to design an encoder–decoder architecture that learns to deform a template model to fit a given scan. The measurement values are then calculated on the deformed template model. To evaluate the proposed method, 27 female and 25 male subjects were scanned using a photogrametry-based scanner and measured by an experienced tailor. Experimental results on the synthetic ModelNet40 dataset and on the real scans demonstrate that the proposed method outperforms state-of-the-art methods, and performs sufficiently close to a professional tailor.
Author Kaashki, Nastaran Nourbakhsh
Hu, Pengpeng
Munteanu, Adrian
Author_xml – sequence: 1
  givenname: Nastaran Nourbakhsh
  orcidid: 0000-0001-8317-4994
  surname: Kaashki
  fullname: Kaashki, Nastaran Nourbakhsh
  email: nknourba@etrovub.be
  organization: Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussels, Belgium
– sequence: 2
  givenname: Pengpeng
  orcidid: 0000-0002-2547-1517
  surname: Hu
  fullname: Hu, Pengpeng
  email: phu@etrovub.be
  organization: Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussels, Belgium
– sequence: 3
  givenname: Adrian
  orcidid: 0000-0001-7290-0428
  surname: Munteanu
  fullname: Munteanu, Adrian
  email: acmuntea@etrovub.be
  organization: Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussels, Belgium
BookMark eNp9kE1LAzEQhoMoWD_ugpeA562TdDe7OVZttVDx0Hp1mcZZ3dJNapIF_femVDx48DTD8H4wzwk7tM4SYxcChkKAvl7OHocSpBiOBCgh1QEbiKIoM62UPGQDAFFlOi_UMTsJYQ0ApcrLAXu5I9ryOaG3rX3LbjDQKx_30XUY0zb5jB5NbJ3lruFjG9-927qOom8NfyQMvaeObAx86l3HkS9Syob4KLvjC4P2jB01uAl0_jNP2fN0srx9yOZP97Pb8TwzUouYSY1NhSXJ1wYNaW10jihlQ3mVg073ErBqxEpirlHlFZiVIp1DaUwjyeDolF3tc7feffQUYr12vbepspZFCRIqqWVSwV5lvAvBU1Nvfduh_6oF1DuKdaJY7yjWPxSTRf2xmDbiDkgC027-M17ujS0R_fboQpTpmdE3kwGBDQ
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2023_3298426
crossref_primary_10_3390_e24111647
crossref_primary_10_1109_ACCESS_2024_3519671
crossref_primary_10_1109_TIM_2023_3334341
crossref_primary_10_1109_TIM_2022_3222501
crossref_primary_10_1109_TIM_2022_3186072
crossref_primary_10_1016_j_imavis_2024_105306
crossref_primary_10_1186_s40691_023_00357_5
crossref_primary_10_1109_TIM_2023_3284948
crossref_primary_10_3389_frai_2024_1336320
crossref_primary_10_3390_s22051885
crossref_primary_10_1109_TCE_2024_3363616
crossref_primary_10_1016_j_patcog_2025_112060
crossref_primary_10_3390_electronics11071048
crossref_primary_10_1002_cav_2159
Cites_doi 10.1117/12.57955
10.1155/2015/404261
10.1109/ISPA.2019.8868844
10.15221/15.155
10.1109/WACV.2014.6836115
10.1016/j.jcm.2016.02.012
10.1016/j.measurement.2018.08.019
10.1007/978-3-030-01216-8_15
10.1109/TIM.2012.2193693
10.1109/CVPR.2010.5539838
10.1109/MSP.2017.2693418
10.1049/iet-smt.2015.0252
10.1016/j.measurement.2014.10.044
10.1145/3197517.3201301
10.1109/CVPR.2007.383165
10.1109/ICCV.2017.230
10.1109/TIM.2007.903605
10.1109/CVPR.2017.492
10.1016/j.gmod.2018.05.003
10.1016/j.eswa.2017.04.052
10.1037/1040-3590.6.4.284
10.1109/ACCESS.2021.3076595
10.1016/j.cag.2017.11.008
10.1016/j.measurement.2020.108519
10.1016/j.jvlc.2018.05.002
10.1037/1082-989X.1.1.30
10.1016/0020-0190(72)90045-2
10.1109/CVPR.2017.16
10.1007/978-3-642-33783-3_18
10.1016/j.eswa.2017.09.006
10.1109/TIM.2019.2906969
10.1109/TIM.2009.2031847
10.1145/2816795.2818013
10.1145/3272127.3275028
10.1016/j.measurement.2020.107751
10.1109/TPAMI.2010.46
10.1109/TII.2020.3016591
10.3390/s19020393
10.1016/j.measurement.2019.106949
10.1016/j.measurement.2020.108173
10.1016/0925-2312(91)90023-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2021.3106126
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 14
ExternalDocumentID 10_1109_TIM_2021_3106126
9517270
Genre orig-research
GrantInformation_xml – fundername: Innoviris through the Project eTailor in close collaboration with Treedy’s
  funderid: 10.13039/501100004744
– fundername: Fonds voor Wetenschappelijk Onderzoek (FWO)
  grantid: G084117
  funderid: 10.13039/501100003130
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-29af8a7e2dface99c94aa22fe484097e270a8f1b2a49a6480cb6e9407ccf2eca3
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698641700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 07:25:06 EDT 2025
Sat Nov 29 04:38:14 EST 2025
Tue Nov 18 22:35:35 EST 2025
Wed Aug 27 02:49:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-29af8a7e2dface99c94aa22fe484097e270a8f1b2a49a6480cb6e9407ccf2eca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2547-1517
0000-0001-7290-0428
0000-0001-8317-4994
PQID 2570208292
PQPubID 85462
PageCount 14
ParticipantIDs crossref_primary_10_1109_TIM_2021_3106126
proquest_journals_2570208292
ieee_primary_9517270
crossref_citationtrail_10_1109_TIM_2021_3106126
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
kouchi (ref27) 2020
ref17
uçar (ref2) 2021; 167
ref19
ref42
ref41
yan (ref12) 2021
(ref24) 2020
ref43
ref49
kingma (ref48) 2014
ref8
ref7
ref9
ref4
ref3
qi (ref44) 2017
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
(ref25) 2020
ref38
(ref45) 2021
yan (ref16) 2019
ref26
ref20
ref22
ref21
loshchilov (ref51) 2016
ref28
ref29
wu (ref50) 2015
barrow (ref47) 1977
wang (ref18) 2018
(ref46) 2021
apeagyei (ref5) 2010; 4
(ref23) 2020
References_xml – ident: ref32
  doi: 10.1117/12.57955
– start-page: 29
  year: 2020
  ident: ref27
  publication-title: Anthropometric Methods for Apparel Design Body Measurement Devices and Techniques
– start-page: 659
  year: 1977
  ident: ref47
  article-title: Parametric correspondence and chamfer matching: Two new techniques for image matching
  publication-title: Proc 5th Int Joint Conf Artif Intell
– ident: ref1
  doi: 10.1155/2015/404261
– ident: ref22
  doi: 10.1109/ISPA.2019.8868844
– ident: ref15
  doi: 10.15221/15.155
– ident: ref36
  doi: 10.1109/WACV.2014.6836115
– ident: ref54
  doi: 10.1016/j.jcm.2016.02.012
– ident: ref10
  doi: 10.1016/j.measurement.2018.08.019
– ident: ref19
  doi: 10.1007/978-3-030-01216-8_15
– ident: ref26
  doi: 10.1109/TIM.2012.2193693
– year: 2020
  ident: ref25
– start-page: 1912
  year: 2015
  ident: ref50
  article-title: 3D ShapeNets: A deep representation for volumetric shapes
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref29
  doi: 10.1109/CVPR.2010.5539838
– ident: ref42
  doi: 10.1109/MSP.2017.2693418
– ident: ref9
  doi: 10.1049/iet-smt.2015.0252
– year: 2018
  ident: ref18
  article-title: Dynamic graph CNN for learning on point clouds
  publication-title: arXiv 1801 07829
– ident: ref28
  doi: 10.1016/j.measurement.2014.10.044
– ident: ref52
  doi: 10.1145/3197517.3201301
– ident: ref39
  doi: 10.1109/CVPR.2007.383165
– ident: ref41
  doi: 10.1109/ICCV.2017.230
– ident: ref4
  doi: 10.1109/TIM.2007.903605
– ident: ref40
  doi: 10.1109/CVPR.2017.492
– ident: ref33
  doi: 10.1016/j.gmod.2018.05.003
– ident: ref13
  doi: 10.1016/j.eswa.2017.04.052
– year: 2014
  ident: ref48
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– year: 2017
  ident: ref44
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: arXiv 1706 02413
– ident: ref56
  doi: 10.1037/1040-3590.6.4.284
– year: 2019
  ident: ref16
  article-title: Anthropometric clothing measurements from 3D body scans
  publication-title: arXiv 1911 00694
– ident: ref20
  doi: 10.1109/ACCESS.2021.3076595
– ident: ref30
  doi: 10.1016/j.cag.2017.11.008
– ident: ref3
  doi: 10.1016/j.measurement.2020.108519
– year: 2021
  ident: ref45
  publication-title: Treedy's 3D Scanner
– ident: ref14
  doi: 10.1016/j.jvlc.2018.05.002
– ident: ref53
  doi: 10.1037/1082-989X.1.1.30
– ident: ref49
  doi: 10.1016/0020-0190(72)90045-2
– ident: ref17
  doi: 10.1109/CVPR.2017.16
– ident: ref37
  doi: 10.1007/978-3-642-33783-3_18
– ident: ref11
  doi: 10.1016/j.eswa.2017.09.006
– ident: ref6
  doi: 10.1109/TIM.2019.2906969
– ident: ref55
  doi: 10.1109/TIM.2009.2031847
– year: 2021
  ident: ref46
  publication-title: PhotoScan Agisoft
– ident: ref31
  doi: 10.1145/2816795.2818013
– year: 2016
  ident: ref51
  article-title: SGDR: Stochastic gradient descent with warm restarts
  publication-title: arXiv 1608 03983
– volume: 4
  start-page: 58
  year: 2010
  ident: ref5
  article-title: Application of 3D body scanning technology to human measurement for clothing fit
  publication-title: Int J Digit Content Technol Appl
– year: 2020
  ident: ref24
– ident: ref35
  doi: 10.1145/3272127.3275028
– ident: ref8
  doi: 10.1016/j.measurement.2020.107751
– ident: ref38
  doi: 10.1109/TPAMI.2010.46
– year: 2021
  ident: ref12
  article-title: Learning anthropometry from rendered humans
  publication-title: arXiv 2101 02515
– ident: ref43
  doi: 10.1109/TII.2020.3016591
– ident: ref21
  doi: 10.3390/s19020393
– ident: ref7
  doi: 10.1016/j.measurement.2019.106949
– volume: 167
  year: 2021
  ident: ref2
  article-title: Estimation of body fat percentage using hybrid machine learning algorithms
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108173
– year: 2020
  ident: ref23
– ident: ref34
  doi: 10.1016/0925-2312(91)90023-5
SSID ssj0007647
Score 2.4135756
Snippet The appearance of 3-D scanners, generating point clouds, has revolutionized anthropometric data collection systems and their applications. Anthropometric data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anthropometric measurement
Anthropometry
Coders
Data collection
Deep learning
Deformation
encoder–decoder architectures
Feature extraction
Machine learning
Missing data
Modules
Neural networks
Noise measurement
Noise sensitivity
point cloud
Scanners
template fitting
Three dimensional models
Three-dimensional displays
Title Deep Learning-Based Automated Extraction of Anthropometric Measurements From a Single 3-D Scan
URI https://ieeexplore.ieee.org/document/9517270
https://www.proquest.com/docview/2570208292
Volume 70
WOSCitedRecordID wos000698641700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH7qEEjjwBgwUWDIh10mLWviuHZ8hEE1DkWTYBKnRY79jCa1TdWkiJ_Pc5J2Q0xIu1mR7UT-Yn9-z37vA_jEXea0HrpoKKyMhHAYFTql6R7YOkPiHBc3YhPq-jq7u9M_evBlHQuDiM3lM_wais1ZvivtMrjKBrQbILolA_2NUqqN1VqvukqKNj9mQhOY3rM6koz14PZqTIYgT8g-DYQun1FQo6nyYiFu2GX07v--axd2ul0kO2thfw89nO3B9l-5Bfdgq7nbaat9-HWBOGddItX76Jx4y7GzZV3SZpVKl4_1oo1uYKVnK-GEaVDasmz8x4VYsdGinDLDbqiXCbI0umA3BMwB_Bxd3n77HnWyCpHlOqkjro3PjELuvLGotdXCGM49imDs0XMVm8wnBTdCGymy2BYSNRl-1nqO1qQfYGNWzvAQWFYoGRuXSqkEVRZGJQVKX_g0dlmsfR8Gq5HObZdzPEhfTPLG9oh1TtjkAZu8w6YPn9ct5m2-jVfq7gcs1vU6GPpwsgIz7yZklQexPh7iiPnRv1sdw9vQd-tdOYGNerHEj7BpH-rf1eK0-deeABXO0FI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hYAIeNn6KMsb8wMukhSaO68SPMKhajVZIdBJPixz7jJCgQW2K-PM5J2kBbZq0Nyuy48hf7M939t0HcMxtapXq2KAjjAyEsBjkKqbp7tk6ReIcG1ZiE8lwmN7cqKsl-L6IhUHE6vIZnvhidZZvCzPzrrI27QaIbslAX-kIwaM6Wmux7iZS1BkyI5rC1NP8UDJU7VF_QKYgj8hC9ZQu35FQparyx1Jc8Uv30_992SZ8bPaR7LQGfguWcLwNG2-yC27Dh-p2p5nuwO9zxEfWpFK9Dc6IuSw7nZUFbVepdPFcTur4BlY4NpdOePBaW4YNXp2IU9adFA9Ms2t6yz2yODhn1wTNLvzqXox-9IJGWCEwXEVlwJV2qU6QW6cNKmWU0Jpzh8Kbe_Q8CXXqopxrobQUaWhyiYpMP2McR6PjPVgeF2PcB5bmiQy1jaVMBFUWOolylC53cWjTULkWtOcjnZkm67gXv7jPKusjVBlhk3lssgabFnxbtHisM278o-6Ox2JRr4GhBYdzMLNmSk4zL9fHfSQxP_h7q6-w1hsNLrPL_vDnZ1j3_dS-lkNYLicz_AKr5qm8m06Oqv_uBRUL05k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Automated+Extraction+of+Anthropometric+Measurements+From+a+Single+3-D+Scan&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Kaashki%2C+Nastaran+Nourbakhsh&rft.au=Hu%2C+Pengpeng&rft.au=Munteanu%2C+Adrian&rft.date=2021&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=70&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2021.3106126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2021_3106126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon