Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems With Heterogeneous Sensor Data

Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning. Furthermore, if with external guidance, humans can master the new behavior more efficiently. So, how can robots achieve this? To address the issue,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE robotics and automation letters Ročník 5; číslo 2; s. 3508 - 3515
Hlavní autori: Liu, Boyi, Wang, Lujia, Liu, Ming, Xu, Cheng-Zhong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2377-3766, 2377-3766
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning. Furthermore, if with external guidance, humans can master the new behavior more efficiently. So, how can robots achieve this? To address the issue, we present a novel framework named FIL. It provides a heterogeneous knowledge fusion mechanism for cloud robotic systems. Then, a knowledge fusion algorithm in FIL is proposed. It enables the cloud to fuse heterogeneous knowledge from local robots and generate guide models for robots with service requests. After that, we introduce a knowledge transfer scheme to facilitate local robots acquiring knowledge from the cloud. With FIL, a robot is capable of utilizing knowledge from other robots to increase its imitation learning in accuracy and efficiency. Compared with transfer learning and meta-learning, FIL is more suitable to be deployed in cloud robotic systems. Finally, we conduct experiments of a self-driving task for robots (cars). The experimental results demonstrate that the shared model generated by FIL increases imitation learning efficiency of local robots in cloud robotic systems.
AbstractList Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning. Furthermore, if with external guidance, humans can master the new behavior more efficiently. So, how can robots achieve this? To address the issue, we present a novel framework named FIL. It provides a heterogeneous knowledge fusion mechanism for cloud robotic systems. Then, a knowledge fusion algorithm in FIL is proposed. It enables the cloud to fuse heterogeneous knowledge from local robots and generate guide models for robots with service requests. After that, we introduce a knowledge transfer scheme to facilitate local robots acquiring knowledge from the cloud. With FIL, a robot is capable of utilizing knowledge from other robots to increase its imitation learning in accuracy and efficiency. Compared with transfer learning and meta-learning, FIL is more suitable to be deployed in cloud robotic systems. Finally, we conduct experiments of a self-driving task for robots (cars). The experimental results demonstrate that the shared model generated by FIL increases imitation learning efficiency of local robots in cloud robotic systems.
Author Wang, Lujia
Liu, Ming
Xu, Cheng-Zhong
Liu, Boyi
Author_xml – sequence: 1
  givenname: Boyi
  orcidid: 0000-0001-7163-5482
  surname: Liu
  fullname: Liu, Boyi
  email: liuboyi17@mails.ucas.edu.cn
  organization: Cloud Computing Lab of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 2
  givenname: Lujia
  orcidid: 0000-0002-6710-4897
  surname: Wang
  fullname: Wang, Lujia
  email: rugga.wang@gmail.com
  organization: Cloud Computing Lab of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 3
  givenname: Ming
  orcidid: 0000-0002-4500-238X
  surname: Liu
  fullname: Liu, Ming
  email: liu.ming.prc@gmail.com
  organization: Department of ECE, Hong Kong University of Science and Technology, Hong Kong, China
– sequence: 4
  givenname: Cheng-Zhong
  orcidid: 0000-0001-9480-0356
  surname: Xu
  fullname: Xu, Cheng-Zhong
  email: czxu@um.edu.mo
  organization: University of Macau, Macao, China
BookMark eNp9kMFLwzAUh4MoOOfugpeA582XpG0ab2M6NygKm-KxpO3r1rk1M0mV_fd2bIh4EB68d_h97wffBTmtTY2EXDEYMAbqNpkNBxw4DLiSkeDshHS4kLIvZBSd_rrPSc-5FQCwkEuhwg5ZjrFAqz0WdLqpvPaVqWmC2tZVvbijQ_pkPnFNx1Zv8MvYd1oaS0dr0xR0ZjLjq5zOd87jxtG3yi_pBD1as8AaTePoHGvX5u-115fkrNRrh73j7pLX8cPLaNJPnh-no2HSz7livs9jXQRxxjSXXGcCZMEgkyIGLRiWgSqiWIZlIXmhgnbKPOCZ5iWghkwrWYouuTn83Vrz0aDz6co0tm4r01aDEqHkAbQpOKRya5yzWKZbW2203aUM0r3StFWa7pWmR6UtEv1B8qMvb3W1_g-8PoAVIv70KGACYia-AZjthTc
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_TCE_2023_3342100
crossref_primary_10_3390_robotics14080108
crossref_primary_10_1007_s11370_023_00485_3
crossref_primary_10_2514_1_I011337
crossref_primary_10_1109_JPROC_2025_3596173
crossref_primary_10_1109_TII_2022_3192675
crossref_primary_10_1109_LRA_2024_3498778
crossref_primary_10_1109_MNET_104_2100403
crossref_primary_10_1016_j_aei_2022_101787
crossref_primary_10_1109_COMST_2021_3075439
crossref_primary_10_1016_j_procs_2021_07_041
crossref_primary_10_3390_s24103241
crossref_primary_10_1109_TCE_2024_3412588
crossref_primary_10_1080_09540091_2021_1936455
crossref_primary_10_1007_s11432_023_4017_0
crossref_primary_10_1109_TASE_2023_3305522
crossref_primary_10_1109_COMST_2023_3329472
crossref_primary_10_1109_JIOT_2024_3503057
crossref_primary_10_1186_s13677_024_00592_1
crossref_primary_10_3390_info13050263
crossref_primary_10_1109_COMST_2022_3175453
crossref_primary_10_1109_TPDS_2021_3127712
crossref_primary_10_1109_ACCESS_2024_3440998
crossref_primary_10_1109_COMST_2022_3151028
crossref_primary_10_1109_LWC_2023_3262573
crossref_primary_10_1109_ACCESS_2025_3593953
crossref_primary_10_1109_COMST_2024_3430368
crossref_primary_10_3233_JCM_214991
crossref_primary_10_1080_24725854_2025_2511666
crossref_primary_10_1016_j_eswa_2022_118510
crossref_primary_10_1016_j_cie_2020_106854
crossref_primary_10_1016_j_iot_2024_101251
crossref_primary_10_1109_ACCESS_2021_3080517
crossref_primary_10_1049_cth2_12761
crossref_primary_10_1007_s10462_024_10766_7
crossref_primary_10_1080_03772063_2025_2505106
crossref_primary_10_1016_j_jmsy_2021_07_017
crossref_primary_10_1108_RIA_10_2023_0146
crossref_primary_10_1109_TDSC_2025_3564697
crossref_primary_10_1109_TITS_2025_3552749
Cites_doi 10.1007/978-3-030-01424-7_27
10.1177/0278364912472380
10.1007/978-3-319-22168-7_1
10.1109/ROBIO49542.2019.8961798
10.1109/TCYB.2016.2519525
10.1109/ICRA.2018.8463162
10.1145/2623330.2623623
10.1109/ICRA.2018.8460968
10.1109/ICRA.2018.8460487
10.1007/s11192-018-2904-6
10.1109/WCICA.2012.6359111
10.15607/RSS.2017.XIII.050
10.1109/ICRA.2017.7989309
10.1109/LRA.2019.2931179
10.1109/LRA.2018.2794626
10.1109/MFI.2012.6343054
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.2976321
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 3515
ExternalDocumentID 10_1109_LRA_2020_2976321
9013081
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1713211; 61603376
  funderid: 10.13039/501100001809
– fundername: Science and Technology Development Fund
  funderid: 10.13039/501100003009
– fundername: Guangdong Science and Technology Plan Guangdong-Hong Kong Cooperation Innovation Platform
  grantid: 2018B050502009
– fundername: Macao S.A.R (FDCT)
  grantid: 0015/2019/AKP
– fundername: Shenzhen Science and Technology Innovation Commission
  grantid: JCYJ2017081853518789; JCYJ20160428154842603
  funderid: 10.13039/501100010877
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-28ad48b1a272ab307d10b7380a31ef49d6875fd72d94d94fc42ba2f0ea0ba97f3
IEDL.DBID RIE
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522360200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Nov 09 06:31:54 EST 2025
Sat Nov 29 06:03:07 EST 2025
Tue Nov 18 22:12:09 EST 2025
Wed Aug 27 02:35:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-28ad48b1a272ab307d10b7380a31ef49d6875fd72d94d94fc42ba2f0ea0ba97f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4500-238X
0000-0001-9480-0356
0000-0002-6710-4897
0000-0001-7163-5482
PQID 2379357240
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_2379357240
crossref_citationtrail_10_1109_LRA_2020_2976321
crossref_primary_10_1109_LRA_2020_2976321
ieee_primary_9013081
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref5) 2015
zhuang (ref7) 2019
ref14
ref11
arora (ref15) 2018
ref1
ref17
ref16
vanschoren (ref8) 2019
ref19
ref18
brendan mcmahan (ref20) 0
mandlekar (ref12) 0
ref24
ref23
rana (ref2) 0
ref26
ref25
yu (ref10) 0
ref22
ganin (ref21) 2016; 17
finn (ref9) 0
ref4
ref3
ref6
References_xml – ident: ref6
  doi: 10.1007/978-3-030-01424-7_27
– ident: ref1
  doi: 10.1177/0278364912472380
– ident: ref25
  doi: 10.1007/978-3-319-22168-7_1
– year: 2018
  ident: ref15
  article-title: A survey of inverse reinforcement learning: Challenges, methods and progress
  publication-title: arXiv 1806 06877
– ident: ref24
  doi: 10.1109/ROBIO49542.2019.8961798
– ident: ref22
  doi: 10.1109/TCYB.2016.2519525
– volume: 17
  start-page: 2096
  year: 2016
  ident: ref21
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– ident: ref16
  doi: 10.1109/ICRA.2018.8463162
– start-page: 2643
  year: 0
  ident: ref10
  article-title: One-shot hierarchical imitation learning of compound visuomotor tasks
  publication-title: Proc Int Conf Intell Robots Syst
– ident: ref18
  doi: 10.1145/2623330.2623623
– ident: ref3
  doi: 10.1109/ICRA.2018.8460968
– ident: ref14
  doi: 10.1109/ICRA.2018.8460487
– start-page: 879
  year: 0
  ident: ref12
  article-title: ROBOTURK: A crowdsourcing platform for robotic skill learning through imitation
  publication-title: Proc Conf Robot Learn
– year: 2019
  ident: ref7
  article-title: A comprehensive survey on transfer learning
  publication-title: arXiv 1911 02685
– ident: ref19
  doi: 10.1007/s11192-018-2904-6
– start-page: 109
  year: 0
  ident: ref2
  article-title: Towards robust skill generalization: Unifying learning from demonstration and motion planning
  publication-title: Proc Int Conf Learn Robots
– ident: ref26
  doi: 10.1109/WCICA.2012.6359111
– year: 2019
  ident: ref8
  article-title: Meta Learning: A survey
  publication-title: arXiv 1911 02685
– ident: ref17
  doi: 10.15607/RSS.2017.XIII.050
– start-page: 357
  year: 0
  ident: ref9
  article-title: One-shot visual imitation learning via meta-learning
  publication-title: Proc 1st Annu Conf Robot Learn
– year: 2015
  ident: ref5
– ident: ref13
  doi: 10.1109/ICRA.2017.7989309
– ident: ref4
  doi: 10.1109/LRA.2019.2931179
– ident: ref11
  doi: 10.1109/LRA.2018.2794626
– start-page: 1273
  year: 0
  ident: ref20
  article-title: Federated learning of deep networks using model averaging
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref23
  doi: 10.1109/MFI.2012.6343054
SSID ssj0001527395
Score 2.4545922
Snippet Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3508
SubjectTerms Algorithms
Big data in robotics and automation
Cloud computing
Computational modeling
deep learning in robotics and automation
Fuses
Knowledge
Knowledge acquisition
Knowledge management
Learning
Microstrip
motion and path planning
Robot sensing systems
Robotics
Robots
Task analysis
Title Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems With Heterogeneous Sensor Data
URI https://ieeexplore.ieee.org/document/9013081
https://www.proquest.com/docview/2379357240
Volume 5
WOSCitedRecordID wos000522360200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5B4kEP_kIjiqQHLyYOunbY1RtBiCZIDGr0tnRrqybIDGwc_dttR0GNxsRkhx3aZuvX9n2vfe8rwDGVOgxbGnvWPHsBD7EniGx5RBNt6HVIY14kCvfZYBA-PvKbEpwuc2GUUkXwmWrY1-IsX6ZJbrfKmtwes9k86xXG2DxX63M_xSqJ8dbiJBLzZn_YNv4fwQ1iTC4l_jfLU1yl8mP9LYxKb_N_n7MFG448ovYc7W0oqfEOrH-RFKzAc8-qQxgCKdHVq9PfRk5E9ekctdEgnakR6i1ispAhragzSnOJhmmcmoaREzFHDy_ZM7q04TKpGWUqzafo1ji9pvyFyMQu3Pe6d51Lz92m4CWE-5lHQiGDMPYFYUTEZmpLH8eMhlhQX-mAyzPjumjJiOSBeXQSkFgQjZXAseBM0z0oj9Ox2gckccJEQrk0fCbQljEI5kscKysHRwmvQnPR01HiftXeeDGKCpcD88hgE1lsIodNFU6WNd7mMht_lK1YLJblHAxVqC3AjNw8nEaEmvWnxQxtOfi91iGs2bbnsTg1KGeTXB3BajLLXqaTOqxcv3frxUD7AHSb0Ew
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4haKIe_IVGFLUHLyYOunZzqzeCEohIDGLktnRrqybIDAz-fttRUKMxMdlhh3Zb97V932vf-wpwRoUKQ19hx5hnx2MhdjgRvkMUUZpehzRmeaJwJ-h2w8GA3RfgYpkLI6XMg89k1dzme_kiTaZmqazGzDabybNe8T2PuPNsrc8VFaMlxvzFXiRmtU6vrj1AgqtEG11K3G-2Jz9M5ccMnJuV5tb_PmgbNi19RPU53jtQkKNd2PgiKliCl6bRh9AUUqD2m1XgRlZG9fkK1VE3nckhai6ispCmragxTKcC9dI41Q9GVsYcPb1mL6hlAmZS3c9kOp2gB-326vLXPON78Ni86Tdajj1PwUkIczOHhFx4YexyEhAe68EtXBwHNMSculJ5TFxq50WJgAjm6UslHok5UVhyHHMWKLoPxVE6kgeABE4CnlAmNKPxlOEMPHAFjqURhKOElaG2-NNRYptqzrwYRrnTgVmksYkMNpHFpgznyxrvc6GNP8qWDBbLchaGMlQWYEZ2JE4iQvUM5AeauBz-XusU1lr9u07UaXdvj2DdvGcemVOBYjaeymNYTWbZ62R8kne3D4L20mI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Imitation+Learning%3A+A+Novel+Framework+for+Cloud+Robotic+Systems+With+Heterogeneous+Sensor+Data&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Liu%2C+Boyi&rft.au=Wang%2C+Lujia&rft.au=Liu%2C+Ming&rft.au=Xu%2C+Cheng-Zhong&rft.date=2020-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=3509&rft.epage=3516&rft_id=info:doi/10.1109%2FLRA.2020.2976321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2020_2976321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon