Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems With Heterogeneous Sensor Data
Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning. Furthermore, if with external guidance, humans can master the new behavior more efficiently. So, how can robots achieve this? To address the issue,...
Uložené v:
| Vydané v: | IEEE robotics and automation letters Ročník 5; číslo 2; s. 3508 - 3515 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2377-3766, 2377-3766 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning. Furthermore, if with external guidance, humans can master the new behavior more efficiently. So, how can robots achieve this? To address the issue, we present a novel framework named FIL. It provides a heterogeneous knowledge fusion mechanism for cloud robotic systems. Then, a knowledge fusion algorithm in FIL is proposed. It enables the cloud to fuse heterogeneous knowledge from local robots and generate guide models for robots with service requests. After that, we introduce a knowledge transfer scheme to facilitate local robots acquiring knowledge from the cloud. With FIL, a robot is capable of utilizing knowledge from other robots to increase its imitation learning in accuracy and efficiency. Compared with transfer learning and meta-learning, FIL is more suitable to be deployed in cloud robotic systems. Finally, we conduct experiments of a self-driving task for robots (cars). The experimental results demonstrate that the shared model generated by FIL increases imitation learning efficiency of local robots in cloud robotic systems. |
|---|---|
| AbstractList | Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning. Furthermore, if with external guidance, humans can master the new behavior more efficiently. So, how can robots achieve this? To address the issue, we present a novel framework named FIL. It provides a heterogeneous knowledge fusion mechanism for cloud robotic systems. Then, a knowledge fusion algorithm in FIL is proposed. It enables the cloud to fuse heterogeneous knowledge from local robots and generate guide models for robots with service requests. After that, we introduce a knowledge transfer scheme to facilitate local robots acquiring knowledge from the cloud. With FIL, a robot is capable of utilizing knowledge from other robots to increase its imitation learning in accuracy and efficiency. Compared with transfer learning and meta-learning, FIL is more suitable to be deployed in cloud robotic systems. Finally, we conduct experiments of a self-driving task for robots (cars). The experimental results demonstrate that the shared model generated by FIL increases imitation learning efficiency of local robots in cloud robotic systems. |
| Author | Wang, Lujia Liu, Ming Xu, Cheng-Zhong Liu, Boyi |
| Author_xml | – sequence: 1 givenname: Boyi orcidid: 0000-0001-7163-5482 surname: Liu fullname: Liu, Boyi email: liuboyi17@mails.ucas.edu.cn organization: Cloud Computing Lab of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 2 givenname: Lujia orcidid: 0000-0002-6710-4897 surname: Wang fullname: Wang, Lujia email: rugga.wang@gmail.com organization: Cloud Computing Lab of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 3 givenname: Ming orcidid: 0000-0002-4500-238X surname: Liu fullname: Liu, Ming email: liu.ming.prc@gmail.com organization: Department of ECE, Hong Kong University of Science and Technology, Hong Kong, China – sequence: 4 givenname: Cheng-Zhong orcidid: 0000-0001-9480-0356 surname: Xu fullname: Xu, Cheng-Zhong email: czxu@um.edu.mo organization: University of Macau, Macao, China |
| BookMark | eNp9kMFLwzAUh4MoOOfugpeA582XpG0ab2M6NygKm-KxpO3r1rk1M0mV_fd2bIh4EB68d_h97wffBTmtTY2EXDEYMAbqNpkNBxw4DLiSkeDshHS4kLIvZBSd_rrPSc-5FQCwkEuhwg5ZjrFAqz0WdLqpvPaVqWmC2tZVvbijQ_pkPnFNx1Zv8MvYd1oaS0dr0xR0ZjLjq5zOd87jxtG3yi_pBD1as8AaTePoHGvX5u-115fkrNRrh73j7pLX8cPLaNJPnh-no2HSz7livs9jXQRxxjSXXGcCZMEgkyIGLRiWgSqiWIZlIXmhgnbKPOCZ5iWghkwrWYouuTn83Vrz0aDz6co0tm4r01aDEqHkAbQpOKRya5yzWKZbW2203aUM0r3StFWa7pWmR6UtEv1B8qMvb3W1_g-8PoAVIv70KGACYia-AZjthTc |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1109_TCE_2023_3342100 crossref_primary_10_3390_robotics14080108 crossref_primary_10_1007_s11370_023_00485_3 crossref_primary_10_2514_1_I011337 crossref_primary_10_1109_JPROC_2025_3596173 crossref_primary_10_1109_TII_2022_3192675 crossref_primary_10_1109_LRA_2024_3498778 crossref_primary_10_1109_MNET_104_2100403 crossref_primary_10_1016_j_aei_2022_101787 crossref_primary_10_1109_COMST_2021_3075439 crossref_primary_10_1016_j_procs_2021_07_041 crossref_primary_10_3390_s24103241 crossref_primary_10_1109_TCE_2024_3412588 crossref_primary_10_1080_09540091_2021_1936455 crossref_primary_10_1007_s11432_023_4017_0 crossref_primary_10_1109_TASE_2023_3305522 crossref_primary_10_1109_COMST_2023_3329472 crossref_primary_10_1109_JIOT_2024_3503057 crossref_primary_10_1186_s13677_024_00592_1 crossref_primary_10_3390_info13050263 crossref_primary_10_1109_COMST_2022_3175453 crossref_primary_10_1109_TPDS_2021_3127712 crossref_primary_10_1109_ACCESS_2024_3440998 crossref_primary_10_1109_COMST_2022_3151028 crossref_primary_10_1109_LWC_2023_3262573 crossref_primary_10_1109_ACCESS_2025_3593953 crossref_primary_10_1109_COMST_2024_3430368 crossref_primary_10_3233_JCM_214991 crossref_primary_10_1080_24725854_2025_2511666 crossref_primary_10_1016_j_eswa_2022_118510 crossref_primary_10_1016_j_cie_2020_106854 crossref_primary_10_1016_j_iot_2024_101251 crossref_primary_10_1109_ACCESS_2021_3080517 crossref_primary_10_1049_cth2_12761 crossref_primary_10_1007_s10462_024_10766_7 crossref_primary_10_1080_03772063_2025_2505106 crossref_primary_10_1016_j_jmsy_2021_07_017 crossref_primary_10_1108_RIA_10_2023_0146 crossref_primary_10_1109_TDSC_2025_3564697 crossref_primary_10_1109_TITS_2025_3552749 |
| Cites_doi | 10.1007/978-3-030-01424-7_27 10.1177/0278364912472380 10.1007/978-3-319-22168-7_1 10.1109/ROBIO49542.2019.8961798 10.1109/TCYB.2016.2519525 10.1109/ICRA.2018.8463162 10.1145/2623330.2623623 10.1109/ICRA.2018.8460968 10.1109/ICRA.2018.8460487 10.1007/s11192-018-2904-6 10.1109/WCICA.2012.6359111 10.15607/RSS.2017.XIII.050 10.1109/ICRA.2017.7989309 10.1109/LRA.2019.2931179 10.1109/LRA.2018.2794626 10.1109/MFI.2012.6343054 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2020.2976321 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 3515 |
| ExternalDocumentID | 10_1109_LRA_2020_2976321 9013081 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1713211; 61603376 funderid: 10.13039/501100001809 – fundername: Science and Technology Development Fund funderid: 10.13039/501100003009 – fundername: Guangdong Science and Technology Plan Guangdong-Hong Kong Cooperation Innovation Platform grantid: 2018B050502009 – fundername: Macao S.A.R (FDCT) grantid: 0015/2019/AKP – fundername: Shenzhen Science and Technology Innovation Commission grantid: JCYJ2017081853518789; JCYJ20160428154842603 funderid: 10.13039/501100010877 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-28ad48b1a272ab307d10b7380a31ef49d6875fd72d94d94fc42ba2f0ea0ba97f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522360200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Sun Nov 09 06:31:54 EST 2025 Sat Nov 29 06:03:07 EST 2025 Tue Nov 18 22:12:09 EST 2025 Wed Aug 27 02:35:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-28ad48b1a272ab307d10b7380a31ef49d6875fd72d94d94fc42ba2f0ea0ba97f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4500-238X 0000-0001-9480-0356 0000-0002-6710-4897 0000-0001-7163-5482 |
| PQID | 2379357240 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2379357240 crossref_citationtrail_10_1109_LRA_2020_2976321 crossref_primary_10_1109_LRA_2020_2976321 ieee_primary_9013081 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 (ref5) 2015 zhuang (ref7) 2019 ref14 ref11 arora (ref15) 2018 ref1 ref17 ref16 vanschoren (ref8) 2019 ref19 ref18 brendan mcmahan (ref20) 0 mandlekar (ref12) 0 ref24 ref23 rana (ref2) 0 ref26 ref25 yu (ref10) 0 ref22 ganin (ref21) 2016; 17 finn (ref9) 0 ref4 ref3 ref6 |
| References_xml | – ident: ref6 doi: 10.1007/978-3-030-01424-7_27 – ident: ref1 doi: 10.1177/0278364912472380 – ident: ref25 doi: 10.1007/978-3-319-22168-7_1 – year: 2018 ident: ref15 article-title: A survey of inverse reinforcement learning: Challenges, methods and progress publication-title: arXiv 1806 06877 – ident: ref24 doi: 10.1109/ROBIO49542.2019.8961798 – ident: ref22 doi: 10.1109/TCYB.2016.2519525 – volume: 17 start-page: 2096 year: 2016 ident: ref21 article-title: Domain-adversarial training of neural networks publication-title: J Mach Learn Res – ident: ref16 doi: 10.1109/ICRA.2018.8463162 – start-page: 2643 year: 0 ident: ref10 article-title: One-shot hierarchical imitation learning of compound visuomotor tasks publication-title: Proc Int Conf Intell Robots Syst – ident: ref18 doi: 10.1145/2623330.2623623 – ident: ref3 doi: 10.1109/ICRA.2018.8460968 – ident: ref14 doi: 10.1109/ICRA.2018.8460487 – start-page: 879 year: 0 ident: ref12 article-title: ROBOTURK: A crowdsourcing platform for robotic skill learning through imitation publication-title: Proc Conf Robot Learn – year: 2019 ident: ref7 article-title: A comprehensive survey on transfer learning publication-title: arXiv 1911 02685 – ident: ref19 doi: 10.1007/s11192-018-2904-6 – start-page: 109 year: 0 ident: ref2 article-title: Towards robust skill generalization: Unifying learning from demonstration and motion planning publication-title: Proc Int Conf Learn Robots – ident: ref26 doi: 10.1109/WCICA.2012.6359111 – year: 2019 ident: ref8 article-title: Meta Learning: A survey publication-title: arXiv 1911 02685 – ident: ref17 doi: 10.15607/RSS.2017.XIII.050 – start-page: 357 year: 0 ident: ref9 article-title: One-shot visual imitation learning via meta-learning publication-title: Proc 1st Annu Conf Robot Learn – year: 2015 ident: ref5 – ident: ref13 doi: 10.1109/ICRA.2017.7989309 – ident: ref4 doi: 10.1109/LRA.2019.2931179 – ident: ref11 doi: 10.1109/LRA.2018.2794626 – start-page: 1273 year: 0 ident: ref20 article-title: Federated learning of deep networks using model averaging publication-title: Proc Int Conf Artif Intell Statist – ident: ref23 doi: 10.1109/MFI.2012.6343054 |
| SSID | ssj0001527395 |
| Score | 2.4545922 |
| Snippet | Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3508 |
| SubjectTerms | Algorithms Big data in robotics and automation Cloud computing Computational modeling deep learning in robotics and automation Fuses Knowledge Knowledge acquisition Knowledge management Learning Microstrip motion and path planning Robot sensing systems Robotics Robots Task analysis |
| Title | Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems With Heterogeneous Sensor Data |
| URI | https://ieeexplore.ieee.org/document/9013081 https://www.proquest.com/docview/2379357240 |
| Volume | 5 |
| WOSCitedRecordID | wos000522360200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5B4kEP_kIjiqQHLyYOunbY1RtBiCZIDGr0tnRrqybIDGwc_dttR0GNxsRkhx3aZuvX9n2vfe8rwDGVOgxbGnvWPHsBD7EniGx5RBNt6HVIY14kCvfZYBA-PvKbEpwuc2GUUkXwmWrY1-IsX6ZJbrfKmtwes9k86xXG2DxX63M_xSqJ8dbiJBLzZn_YNv4fwQ1iTC4l_jfLU1yl8mP9LYxKb_N_n7MFG448ovYc7W0oqfEOrH-RFKzAc8-qQxgCKdHVq9PfRk5E9ekctdEgnakR6i1ispAhragzSnOJhmmcmoaREzFHDy_ZM7q04TKpGWUqzafo1ji9pvyFyMQu3Pe6d51Lz92m4CWE-5lHQiGDMPYFYUTEZmpLH8eMhlhQX-mAyzPjumjJiOSBeXQSkFgQjZXAseBM0z0oj9Ox2gckccJEQrk0fCbQljEI5kscKysHRwmvQnPR01HiftXeeDGKCpcD88hgE1lsIodNFU6WNd7mMht_lK1YLJblHAxVqC3AjNw8nEaEmvWnxQxtOfi91iGs2bbnsTg1KGeTXB3BajLLXqaTOqxcv3frxUD7AHSb0Ew |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4haKIe_IVGFLUHLyYOunZzqzeCEohIDGLktnRrqybIDAz-fttRUKMxMdlhh3Zb97V932vf-wpwRoUKQ19hx5hnx2MhdjgRvkMUUZpehzRmeaJwJ-h2w8GA3RfgYpkLI6XMg89k1dzme_kiTaZmqazGzDabybNe8T2PuPNsrc8VFaMlxvzFXiRmtU6vrj1AgqtEG11K3G-2Jz9M5ccMnJuV5tb_PmgbNi19RPU53jtQkKNd2PgiKliCl6bRh9AUUqD2m1XgRlZG9fkK1VE3nckhai6ispCmragxTKcC9dI41Q9GVsYcPb1mL6hlAmZS3c9kOp2gB-326vLXPON78Ni86Tdajj1PwUkIczOHhFx4YexyEhAe68EtXBwHNMSculJ5TFxq50WJgAjm6UslHok5UVhyHHMWKLoPxVE6kgeABE4CnlAmNKPxlOEMPHAFjqURhKOElaG2-NNRYptqzrwYRrnTgVmksYkMNpHFpgznyxrvc6GNP8qWDBbLchaGMlQWYEZ2JE4iQvUM5AeauBz-XusU1lr9u07UaXdvj2DdvGcemVOBYjaeymNYTWbZ62R8kne3D4L20mI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Imitation+Learning%3A+A+Novel+Framework+for+Cloud+Robotic+Systems+With+Heterogeneous+Sensor+Data&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Liu%2C+Boyi&rft.au=Wang%2C+Lujia&rft.au=Liu%2C+Ming&rft.au=Xu%2C+Cheng-Zhong&rft.date=2020-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=3509&rft.epage=3516&rft_id=info:doi/10.1109%2FLRA.2020.2976321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2020_2976321 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |