Distributed Continuous-Time Algorithm for Time-Varying Optimization With Affine Formation Constraints

In this article, we investigate a continuous-time distributed optimization problem with time-varying cost functions and affine formation constraints, which are described by the stress matrices rather than the standard Laplacians. The objective is to minimize the sum of local time-varying cost functi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 68; číslo 4; s. 2615 - 2622
Hlavní autoři: Wu, Chu, Fang, Hao, Zeng, Xianlin, Yang, Qingkai, Wei, Yue, Chen, Jie
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we investigate a continuous-time distributed optimization problem with time-varying cost functions and affine formation constraints, which are described by the stress matrices rather than the standard Laplacians. The objective is to minimize the sum of local time-varying cost functions, each of which is known by only one individual agent. The optimal solution is a time-varying affine transformation of a nominal configuration rather than some constants. To tackle the difficulty caused by the dynamic aspect of the local cost functions and handle affine formation constraints, the fixed-time distributed estimator and distributed gradient tracking technique are developed, respectively, to compensate the time variation of solution trajectory and calculate the weighted sum of local gradients to eliminate the tracking error. The time-varying optimal solution trajectory is thus accurately tracked with the proposed estimator-based gradient tracking algorithm. Using appropriately chosen coefficients, the tracking error is guaranteed to vanish at an exponential rate. The proposed estimator-based gradient tracking algorithm is further validated through numerical simulations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3190054