Consensus Based Distributed Spectral Radius Estimation

A consensus based distributed algorithm to compute the spectral radius of a network is proposed. The spectral radius of the graph is the largest eigenvalue of the adjacency matrix, and is a useful characterization of the network graph. Conventionally, centralized methods are used to compute the spec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 27; s. 1045 - 1049
Hlavní autoři: Muniraju, Gowtham, Tepedelenlioglu, Cihan, Spanias, Andreas
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A consensus based distributed algorithm to compute the spectral radius of a network is proposed. The spectral radius of the graph is the largest eigenvalue of the adjacency matrix, and is a useful characterization of the network graph. Conventionally, centralized methods are used to compute the spectral radius, which involves eigenvalue decomposition of the adjacency matrix of the underlying graph. Our distributed algorithm uses a simple update rule to reach consensus on the spectral radius, using only local communications. We consider time-varying graphs to model packet loss and imperfect transmissions, and provide the convergence characteristics of our algorithm, for both static and time-varying graphs. We prove that the convergence error is a function of principal eigenvector of adjacency matrix of the graph and reduces as <inline-formula><tex-math notation="LaTeX">\mathcal {O}(1/t)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">t</tex-math></inline-formula> is the number of iterations. The algorithm works for any connected graph structure. Simulation results supporting the theory are also presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2020.3003237