Consensus Based Distributed Spectral Radius Estimation

A consensus based distributed algorithm to compute the spectral radius of a network is proposed. The spectral radius of the graph is the largest eigenvalue of the adjacency matrix, and is a useful characterization of the network graph. Conventionally, centralized methods are used to compute the spec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 27; s. 1045 - 1049
Hlavní autoři: Muniraju, Gowtham, Tepedelenlioglu, Cihan, Spanias, Andreas
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A consensus based distributed algorithm to compute the spectral radius of a network is proposed. The spectral radius of the graph is the largest eigenvalue of the adjacency matrix, and is a useful characterization of the network graph. Conventionally, centralized methods are used to compute the spectral radius, which involves eigenvalue decomposition of the adjacency matrix of the underlying graph. Our distributed algorithm uses a simple update rule to reach consensus on the spectral radius, using only local communications. We consider time-varying graphs to model packet loss and imperfect transmissions, and provide the convergence characteristics of our algorithm, for both static and time-varying graphs. We prove that the convergence error is a function of principal eigenvector of adjacency matrix of the graph and reduces as <inline-formula><tex-math notation="LaTeX">\mathcal {O}(1/t)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">t</tex-math></inline-formula> is the number of iterations. The algorithm works for any connected graph structure. Simulation results supporting the theory are also presented.
AbstractList A consensus based distributed algorithm to compute the spectral radius of a network is proposed. The spectral radius of the graph is the largest eigenvalue of the adjacency matrix, and is a useful characterization of the network graph. Conventionally, centralized methods are used to compute the spectral radius, which involves eigenvalue decomposition of the adjacency matrix of the underlying graph. Our distributed algorithm uses a simple update rule to reach consensus on the spectral radius, using only local communications. We consider time-varying graphs to model packet loss and imperfect transmissions, and provide the convergence characteristics of our algorithm, for both static and time-varying graphs. We prove that the convergence error is a function of principal eigenvector of adjacency matrix of the graph and reduces as [Formula Omitted], where [Formula Omitted] is the number of iterations. The algorithm works for any connected graph structure. Simulation results supporting the theory are also presented.
A consensus based distributed algorithm to compute the spectral radius of a network is proposed. The spectral radius of the graph is the largest eigenvalue of the adjacency matrix, and is a useful characterization of the network graph. Conventionally, centralized methods are used to compute the spectral radius, which involves eigenvalue decomposition of the adjacency matrix of the underlying graph. Our distributed algorithm uses a simple update rule to reach consensus on the spectral radius, using only local communications. We consider time-varying graphs to model packet loss and imperfect transmissions, and provide the convergence characteristics of our algorithm, for both static and time-varying graphs. We prove that the convergence error is a function of principal eigenvector of adjacency matrix of the graph and reduces as <inline-formula><tex-math notation="LaTeX">\mathcal {O}(1/t)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">t</tex-math></inline-formula> is the number of iterations. The algorithm works for any connected graph structure. Simulation results supporting the theory are also presented.
Author Spanias, Andreas
Tepedelenlioglu, Cihan
Muniraju, Gowtham
Author_xml – sequence: 1
  givenname: Gowtham
  orcidid: 0000-0003-0532-2896
  surname: Muniraju
  fullname: Muniraju, Gowtham
  email: gmuniraj@asu.edu
  organization: School of ECEE, Arizona State University, Tempe, AZ, USA
– sequence: 2
  givenname: Cihan
  orcidid: 0000-0002-9180-1158
  surname: Tepedelenlioglu
  fullname: Tepedelenlioglu, Cihan
  email: cihan@asu.edu
  organization: School of ECEE, Arizona State University, Tempe, AZ, USA
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0003-0306-9348
  surname: Spanias
  fullname: Spanias, Andreas
  email: spanias@asu.edu
  organization: School of ECEE, Arizona State University, Tempe, AZ, USA
BookMark eNp9UE1LAzEQDVLBtnoXvBQ8b50k-5E5aq0fUFCsnkM2O4WUuluT7MF_39QWDx48zYN5b968N2KDtmuJsUsOU84BbxbL16kAAVMJIIWsTtiQF4XKhCz5IGGoIEMEdcZGIawBQHFVDFk569pAbejD5M4Eaib3LkTv6j4mvNySjd5sJm-mcYkxD9F9mui69pydrswm0MVxjtnHw_x99pQtXh6fZ7eLzArkMRMFNxWVZCzmvGoaYYWSVKKpS1J10aR1rRCbyqA1glsEwgaxlvkKwIKVY3Z9uLv13VdPIep11_s2WWqRCwGykgoSCw4s67sQPK301qdH_bfmoPft6NSO3rejj-0kSflHYl38iZYCu81_wquD0BHRrw9yjlWRyx3mlXML
CODEN ISPLEM
CitedBy_id crossref_primary_10_1109_LSP_2021_3050056
crossref_primary_10_3390_fi15050183
crossref_primary_10_1002_eng2_12710
crossref_primary_10_1016_j_sigpro_2022_108530
crossref_primary_10_1007_s11424_021_1218_6
crossref_primary_10_3390_math9233020
Cites_doi 10.1016/j.laa.2009.01.005
10.1109/JPROC.2011.2157884
10.1109/SSPD.2017.8233241
10.1016/0095-8956(86)90069-9
10.1109/TSP.2012.2211593
10.1109/TSIPN.2019.2945639
10.1109/JSAC.2005.843548
10.1109/ACC.2011.5990911
10.37236/2735
10.1109/IEEECONF44664.2019.9049018
10.1109/ACSSC.2018.8645297
10.2200/S00829ED1V01Y201802COM013
10.1016/j.laa.2007.06.005
10.1007/11533382_11
10.1109/CDC.2006.377282
10.1016/j.laa.2012.05.021
10.1109/TSP.2014.2355778
10.1109/43.159993
10.3390/s8084821
10.1007/978-3-540-74466-5_55
10.5614/ejgta.2014.2.1.5
10.1109/TSIPN.2018.2866322
10.1109/JSEN.2016.2612642
10.1016/j.sysconle.2013.03.002
10.1016/S0167-5060(08)70511-9
10.1137/1030002
10.1145/1284680.1284681
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2020.3003237
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 1049
ExternalDocumentID 10_1109_LSP_2020_3003237
9119754
Genre orig-research
GrantInformation_xml – fundername: NSF CPS
– fundername: Arizona State University
  funderid: 10.13039/100007482
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-251a7e6eac9417dd2c283e69ab6e8b5d51ab899d7a9ca21c90e9d99b34f00c0c3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546881400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Sun Nov 09 06:29:37 EST 2025
Sat Nov 29 01:48:54 EST 2025
Tue Nov 18 20:15:39 EST 2025
Wed Aug 27 02:36:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-251a7e6eac9417dd2c283e69ab6e8b5d51ab899d7a9ca21c90e9d99b34f00c0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0306-9348
0000-0003-0532-2896
0000-0002-9180-1158
PQID 2422037380
PQPubID 75747
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_LSP_2020_3003237
ieee_primary_9119754
crossref_primary_10_1109_LSP_2020_3003237
proquest_journals_2422037380
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref30
zhang (ref16) 2019
thomason (ref2) 1978; 3
ref11
ref10
zhang (ref14) 2018
zhang (ref15) 2018; 10
ref1
ref17
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
stevanovi? (ref9) 2015
ref4
ref3
ref6
ref5
References_xml – year: 2019
  ident: ref16
  article-title: Distributed network center area estimation
– ident: ref6
  doi: 10.1016/j.laa.2009.01.005
– start-page: 33
  year: 2015
  ident: ref9
  article-title: Walk counts and the spectral radius of graphs
  publication-title: Bulletin
– ident: ref21
  doi: 10.1109/JPROC.2011.2157884
– ident: ref17
  doi: 10.1109/SSPD.2017.8233241
– ident: ref10
  doi: 10.1016/0095-8956(86)90069-9
– ident: ref28
  doi: 10.1109/TSP.2012.2211593
– ident: ref24
  doi: 10.1109/TSIPN.2019.2945639
– ident: ref3
  doi: 10.1109/JSAC.2005.843548
– ident: ref20
  doi: 10.1109/ACC.2011.5990911
– ident: ref1
  doi: 10.37236/2735
– ident: ref25
  doi: 10.1109/IEEECONF44664.2019.9049018
– ident: ref26
  doi: 10.1109/ACSSC.2018.8645297
– volume: 10
  start-page: 1
  year: 2018
  ident: ref15
  publication-title: Synthesis Lectures on Communications
  doi: 10.2200/S00829ED1V01Y201802COM013
– ident: ref5
  doi: 10.1016/j.laa.2007.06.005
– ident: ref4
  doi: 10.1007/11533382_11
– ident: ref12
  doi: 10.1109/CDC.2006.377282
– ident: ref7
  doi: 10.1016/j.laa.2012.05.021
– ident: ref18
  doi: 10.1109/TSP.2014.2355778
– ident: ref13
  doi: 10.1109/43.159993
– ident: ref23
  doi: 10.3390/s8084821
– year: 2018
  ident: ref14
  article-title: Distributed location detection in wireless sensor networks
– ident: ref22
  doi: 10.1007/978-3-540-74466-5_55
– ident: ref8
  doi: 10.5614/ejgta.2014.2.1.5
– ident: ref27
  doi: 10.1109/TSIPN.2018.2866322
– ident: ref30
  doi: 10.1109/JSEN.2016.2612642
– ident: ref19
  doi: 10.1016/j.sysconle.2013.03.002
– volume: 3
  start-page: 259
  year: 1978
  ident: ref2
  article-title: Hamiltonian cycles and uniquely edge colourable graphs
  publication-title: Annals of Discrete Mathematics
  doi: 10.1016/S0167-5060(08)70511-9
– ident: ref29
  doi: 10.1137/1030002
– ident: ref11
  doi: 10.1145/1284680.1284681
SSID ssj0008185
Score 2.3379314
Snippet A consensus based distributed algorithm to compute the spectral radius of a network is proposed. The spectral radius of the graph is the largest eigenvalue of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1045
SubjectTerms Algebraic connectivity
Algorithms
Computer simulation
consensus
Convergence
Distributed algorithms
distributed estimation
Eigenvalues
Eigenvalues and eigenfunctions
Eigenvectors
Estimation
Graphs
Packet loss
Signal processing algorithms
Spectra
spectral radius
Title Consensus Based Distributed Spectral Radius Estimation
URI https://ieeexplore.ieee.org/document/9119754
https://www.proquest.com/docview/2422037380
Volume 27
WOSCitedRecordID wos000546881400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHX1WsVsnBi2DsZjfJZo4-WjxIKT6gt5DsbqEgrfTh73cmSUNBEbwtZDcJM7s73-zszAdwhTKw1kbGV7lNyEGJnI-YGz8ka2sx4tQBU5BN6MEgGY1w2ICbOhfGOVdcPnO33Cxi-XZmVnxU1kWOeUXhFmxprctcrXrXZcNT3i8U9DWRrEOSArvPr0NyBCX5pzSFJTOeb5igglPlx0ZcWJf-_v_-6wD2KhTp3ZVqP4SGmx7B7kZtwRbETMXJPBYL754slfUeuUQus1tRm1nn-YjDe8nshHr0aKGXOYzH8N7vvT08-RVJgm8kBkuf8EmmXUz7J4aBtlYaAgwuxiyPXZJHlh7n5FNZnaHJZGBQOLSkDhWOhTDCqBNoTmdTdwoerXenGIGhUmTns0TlUT62CYG4ELWQbeiu5ZaaqoI4E1l8pIUnITAlSacs6bSSdBuu6xGfZfWMP_q2WLJ1v0qobeisVZNWy2uREq6QgmsyibPfR53DDr-7PCvpQHM5X7kL2DZfy8liflnMnG-cS76V
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB5qFdQHb7FaNQ--CMZuNuc8erRUrKVohb6FZHcLBWmlh7_fmSQNBUXwbSGzbPj2mGN35gO4QulorX1lu6mOyEHxjY2YKtsjbavR59QBlZFNhN1uNBhgrwI3ZS6MMSZ7fGZuuZnd5euJWnCorIF85-V7a7Due5508myt8txl1ZO_MBQ0noiWl5ICG523HrmCkjxUWsSSOc9XlFDGqvLjKM70S2v3f3-2BzuFHWnd5RO_DxUzPoDtleqChxAwGSczWcyse9JV2nrkIrnMb0Vt5p3nIIf1mugRSTRpq-dZjEfw3mr2H9p2QZNgK4nO3CYLJQlNQCcoek6otVRkMpgAkzQwUepr-pySV6XDBFUiHYXCoKYJcb2hEEoo9xiq48nYnIBFO964bIOh65KmTyI39dOhjsiM8zAUsgaNJW6xKmqIM5XFR5z5EgJjQjpmpOMC6Rpclz0-8_oZf8geMrKlXAFqDerLqYmLDTaLybKQgqsyidPfe13CZrv_0ok7T93nM9jicfLISR2q8-nCnMOG-pqPZtOLbBV9A7U7wdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consensus+Based+Distributed+Spectral+Radius+Estimation&rft.jtitle=IEEE+signal+processing+letters&rft.au=Muniraju%2C+Gowtham&rft.au=Tepedelenlioglu%2C+Cihan&rft.au=Spanias%2C+Andreas&rft.date=2020&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=27&rft.spage=1045&rft.epage=1049&rft_id=info:doi/10.1109%2FLSP.2020.3003237&rft.externalDocID=9119754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon