Effects of Extended Stochastic Gradient Descent Algorithms on Improving Latent Factor-Based Recommender Systems
High-dimensional and sparse (HiDS) matrices from recommender systems contain various useful patterns. A latent factor (LF) analysis is highly efficient in grasping these patterns. Stochastic gradient descent (SGD) is a widely adopted algorithm to train an LF model. Can its extensions be capable of f...
Uloženo v:
| Vydáno v: | IEEE robotics and automation letters Ročník 4; číslo 2; s. 618 - 624 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2377-3766, 2377-3766 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!