Nonsubsampled Graph Filter Banks: Theory and Distributed Algorithms

In this paper, we consider nonsubsampled graph filter banks (NSGFBs) to process data on a sparse graph. The analysis filter banks of NSGFBs have small bandwidth, pass/block the normalized constant signal, and have stability on ℓ 2 . Given an analysis filter bank with small bandwidth, we introduce al...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 67; číslo 15; s. 3938 - 3953
Hlavní autori: Jiang, Junzheng, Cheng, Cheng, Sun, Qiyu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we consider nonsubsampled graph filter banks (NSGFBs) to process data on a sparse graph. The analysis filter banks of NSGFBs have small bandwidth, pass/block the normalized constant signal, and have stability on ℓ 2 . Given an analysis filter bank with small bandwidth, we introduce algebraic and optimization methods to construct well-localized synthesis filter banks such that the corresponding NSGFBs provide a perfect signal reconstruction in the noiseless setting. We also prove that the proposed NSGFBs can control the resonance effect in the presence of bounded noise and they can limit the influence of shot noise primarily to a small neighborhood near its location on the graph. We later introduce an iterative algorithm to implement the proposed NSGFBs in a distributed manner, and develop an NSGFB-based denoising technique which is demonstrated to have satisfactory performance on noise suppression.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2019.2922160