Grey Relational Analysis-Based Objective Function Optimization for Predictive Torque Control of Induction Machine
This article presents grey relational analysis (GRA)-based objective function optimization in predictive torque control (PTC) for induction machine. Selection of appropriate weighting factor in the objective function is one of the key aspects in the implementation of PTC. However, selection of suita...
Uloženo v:
| Vydáno v: | IEEE transactions on industry applications Ročník 57; číslo 1; s. 835 - 844 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0093-9994, 1939-9367 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This article presents grey relational analysis (GRA)-based objective function optimization in predictive torque control (PTC) for induction machine. Selection of appropriate weighting factor in the objective function is one of the key aspects in the implementation of PTC. However, selection of suitable weighting factor in the objective function is a heuristic task. To address this issue, GRA method is implemented for the objective function optimization. In this approach, single-objective function is modified into two independent objective functions for stator flux and torque. A grey relational grade is used to identify the suitable control action in each sampling. A MATLAB/Simulink model is developed to validate the control algorithm under various operating conditions of the drive, and corresponding results are compared with experimental results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0093-9994 1939-9367 |
| DOI: | 10.1109/TIA.2020.3037875 |