A Novel Method for Mechanical Fault Diagnosis of Underwater Pump Motors Based on Power Flow Theory

Due to difficulty in disposing of unsteady and nonlinear acoustic signals by conventional signal process methods, it remains a challenge to develop the noncontacting-based fault diagnosis techniques for underwater pump systems. Fortunately, the power flow theory (PFT), which has been proposed to ana...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 17
Main Authors: Jiang, Weixiong, Wang, Honghui, Liu, Guijie, Liu, Yonghong, Cai, Baoping, Li, Zhixiong
Format: Journal Article
Language:English
Published: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9456, 1557-9662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to difficulty in disposing of unsteady and nonlinear acoustic signals by conventional signal process methods, it remains a challenge to develop the noncontacting-based fault diagnosis techniques for underwater pump systems. Fortunately, the power flow theory (PFT), which has been proposed to analyze the fluid-solid interaction of underwater structures, provides great potential to process underwater acoustic signals. However, this potential has not been exploited in literature yet. In order to bridge this research gap, this article proposes a novel fault diagnosis method based on PFT, deep convolution processing method (DCPM), and genetic algorithm-backpropagation neural network (GANN). This method includes three steps: firstly, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is employed to decrease the proportion of the noise components in the original acoustic signals; and the radiated power flow is deduced from the denoised acoustics by PFT. Then, the Hilbert transform is conducted to obtain the Hilbert spectra of the radiated power flow signals and the deep convolution processing feature (DCPF) is extracted from the Hilbert spectra by DCPM. Lastly, the radiated power level (RPL) is calculated directly from the radiated power flow signals. The DCPF and RPL are input into a GANN for fault diagnosis. The effectiveness of the proposed method is validated using an underwater acoustic experiment. The results show that the diagnosis performance is competitive with the other five existing methods in terms of accuracy and efficiency.
AbstractList Due to difficulty in disposing of unsteady and nonlinear acoustic signals by conventional signal process methods, it remains a challenge to develop the noncontacting-based fault diagnosis techniques for underwater pump systems. Fortunately, the power flow theory (PFT), which has been proposed to analyze the fluid–solid interaction of underwater structures, provides great potential to process underwater acoustic signals. However, this potential has not been exploited in literature yet. In order to bridge this research gap, this article proposes a novel fault diagnosis method based on PFT, deep convolution processing method (DCPM), and genetic algorithm-backpropagation neural network (GANN). This method includes three steps: firstly, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is employed to decrease the proportion of the noise components in the original acoustic signals; and the radiated power flow is deduced from the denoised acoustics by PFT. Then, the Hilbert transform is conducted to obtain the Hilbert spectra of the radiated power flow signals and the deep convolution processing feature (DCPF) is extracted from the Hilbert spectra by DCPM. Lastly, the radiated power level (RPL) is calculated directly from the radiated power flow signals. The DCPF and RPL are input into a GANN for fault diagnosis. The effectiveness of the proposed method is validated using an underwater acoustic experiment. The results show that the diagnosis performance is competitive with the other five existing methods in terms of accuracy and efficiency.
Author Liu, Yonghong
Cai, Baoping
Wang, Honghui
Jiang, Weixiong
Liu, Guijie
Li, Zhixiong
Author_xml – sequence: 1
  givenname: Weixiong
  orcidid: 0000-0002-2193-2611
  surname: Jiang
  fullname: Jiang, Weixiong
  email: jiangweixiong@stu.ouc.edu.cn
  organization: Department of Mechanical and Electrical Engineering, Key Laboratory of Ocean Engineering of Shang Dong Province, Ocean University of China, Qingdao, China
– sequence: 2
  givenname: Honghui
  orcidid: 0000-0002-9640-6237
  surname: Wang
  fullname: Wang, Honghui
  email: whh4358@ouc.edu.cn
  organization: Department of Mechanical and Electrical Engineering, Key Laboratory of Ocean Engineering of Shang Dong Province, Ocean University of China, Qingdao, China
– sequence: 3
  givenname: Guijie
  orcidid: 0000-0002-3353-117X
  surname: Liu
  fullname: Liu, Guijie
  email: liuguijie@ouc.edu.cn
  organization: Department of Mechanical and Electrical Engineering, Key Laboratory of Ocean Engineering of Shang Dong Province, Ocean University of China, Qingdao, China
– sequence: 4
  givenname: Yonghong
  orcidid: 0000-0001-6983-2137
  surname: Liu
  fullname: Liu, Yonghong
  email: liuyh@upc.edu.cn
  organization: Department of Electrical and Mechanical Engineering, China University of Petroleum (East China), Qingdao, China
– sequence: 5
  givenname: Baoping
  orcidid: 0000-0002-4499-492X
  surname: Cai
  fullname: Cai, Baoping
  email: caibaoping@upc.edu.cn
  organization: Department of Electrical and Mechanical Engineering, China University of Petroleum (East China), Qingdao, China
– sequence: 6
  givenname: Zhixiong
  orcidid: 0000-0002-7265-0008
  surname: Li
  fullname: Li, Zhixiong
  email: zhixiong.li@ieee.org
  organization: School of Engineering, Ocean University of China, Qingdao, China
BookMark eNp9kE1PwkAQhjcGEwG9m3jZxHNx9qMfe0QUNQHlAOdm206lpHRxdyvh31sC8eDB00wy7zNv8gxIrzENEnLLYMQYqIfl23zEgcNIgJQC4IL0WRjGgYoi3iN9AJYESobRFRk4twGAOJJxn2Rj-m6-saZz9GtT0NLYbs3XuqlyXdOpbmtPnyr92RhXOWpKumoKtHvt0dJFu93RufHGOvqoHRbUNHRh9t1pWps9Xa7R2MM1uSx17fDmPIdkNX1eTl6D2cfL22Q8C3KumA84E3EGEkVR6AhFkhcawkRgUvJQ6DCTsUSuIiyzTEmteF4WmPBMykQV0KXEkNyf_u6s-WrR-XRjWtt0lSmXSSxFHHLZpeCUyq1xzmKZ7my11faQMkiPJtPOZHo0mZ5Ndkj0B8krr31lGm91Vf8H3p3AChF_e5RgjIVC_AAwYYHw
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_113113
crossref_primary_10_3390_electronics12020410
crossref_primary_10_1002_qre_3597
crossref_primary_10_1002_rob_70019
crossref_primary_10_1016_j_jmsy_2023_08_004
crossref_primary_10_1016_j_wroa_2025_100333
crossref_primary_10_1109_TIM_2024_3417591
crossref_primary_10_1016_j_aei_2024_102576
crossref_primary_10_1016_j_asoc_2025_113138
crossref_primary_10_1109_TEC_2025_3550544
crossref_primary_10_1016_j_aei_2024_102365
crossref_primary_10_1016_j_asoc_2025_112737
crossref_primary_10_1109_TFUZZ_2024_3411389
crossref_primary_10_1016_j_knosys_2025_113430
Cites_doi 10.1016/j.tws.2004.03.006
10.3390/s18030782
10.1016/j.epsl.2015.06.017
10.1016/0022-460X(80)90662-8
10.1177/1748006X13492954
10.1016/j.measurement.2020.107616
10.1115/1.2930140
10.1007/s11071-017-3941-z
10.1007/s00500-018-3256-0
10.4028/www.scientific.net/AMM.50-51.536
10.1016/0022-460X(80)90454-X
10.1016/j.procir.2016.07.009
10.1016/j.ijmecsci.2016.06.023
10.1016/0022-460X(80)90453-8
10.1016/j.ymssp.2019.07.007
10.1016/0022-460X(80)90452-6
10.1016/j.jngse.2015.05.006
10.1016/j.copbio.2019.08.010
10.1007/s12206-018-1004-0
10.2118/182760-PA
10.1109/JSYST.2016.2542179
10.1007/s00521-015-1850-y
10.1016/j.marstruc.2018.07.004
10.1016/j.compind.2019.02.001
10.1063/5.0020098
10.1016/j.neucom.2018.06.078
10.1121/1.4943544
10.1109/TIA.2016.2608958
10.1109/TII.2018.2866549
10.1007/s11001-014-9223-y
10.1016/j.jsv.2016.11.020
10.1088/1742-6596/679/1/012036
10.1007/s11001-014-9227-7
10.1016/j.jsv.2016.09.012
10.1016/0022-460X(80)90663-X
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2020.3044300
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 17
ExternalDocumentID 10_1109_TIM_2020_3044300
9311153
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2019YFE0105100
– fundername: Norwegian Research Council (AutoPRO)
  grantid: 309628
  funderid: 10.13039/501100005416
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-2137b04e3dda6e38cda0583e8f253a5b474e296efbb94a92cfde82b4489d0e8f3
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616309500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:23:21 EDT 2025
Sat Nov 29 04:38:01 EST 2025
Tue Nov 18 21:52:55 EST 2025
Wed Aug 27 04:55:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-2137b04e3dda6e38cda0583e8f253a5b474e296efbb94a92cfde82b4489d0e8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2193-2611
0000-0002-9640-6237
0000-0002-3353-117X
0000-0002-7265-0008
0000-0001-6983-2137
0000-0002-4499-492X
PQID 2487437524
PQPubID 85462
PageCount 17
ParticipantIDs crossref_primary_10_1109_TIM_2020_3044300
crossref_citationtrail_10_1109_TIM_2020_3044300
proquest_journals_2487437524
ieee_primary_9311153
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
xuebin (ref22) 2009; 50
ref36
ref14
zhang (ref10) 2008; 32
ref30
ref33
ref32
bogusawski (ref38) 2019; 30
ref1
ref17
ref16
ref19
ref18
deng (ref39) 2020; 204
shobowale (ref2) 2014; 13
fauske (ref7) 2007; 54
timoshenko (ref25) 1941
yingkui (ref34) 2019; 40
shi (ref11) 2016; 679
ref46
ref24
ref45
ref48
ref26
ref47
ref20
ref42
ref41
oliver (ref23) 2013
ref44
ref21
ref43
chang (ref31) 2016; 42
ref28
ref27
ref29
ref9
liu (ref37) 2009
ref4
ref3
ref6
ref5
ref40
wang (ref8) 2006; 28
References_xml – volume: 42
  start-page: 1300
  year: 2016
  ident: ref31
  article-title: Convolutional neural networks in image understanding
  publication-title: ACTA Automatica Sinica
– ident: ref30
  doi: 10.1016/j.tws.2004.03.006
– ident: ref33
  doi: 10.3390/s18030782
– ident: ref42
  doi: 10.1016/j.epsl.2015.06.017
– ident: ref26
  doi: 10.1016/0022-460X(80)90662-8
– ident: ref1
  doi: 10.1177/1748006X13492954
– ident: ref47
  doi: 10.1016/j.measurement.2020.107616
– volume: 54
  start-page: 34
  year: 2007
  ident: ref7
  article-title: Estimation of AUV dynamics for sensor fusion
  publication-title: Proc 10th Int Conf Inf Fusion
– ident: ref28
  doi: 10.1115/1.2930140
– volume: 50
  start-page: 10
  year: 2009
  ident: ref22
  article-title: Multi-objective optimization design of circular cylindrical ring-stiffened shell of submarine
  publication-title: Shipbuild China
– volume: 28
  start-page: 25
  year: 2006
  ident: ref8
  article-title: Sensor fault diagnosis of autonomous underwater vehicle
  publication-title: Robot
– ident: ref20
  doi: 10.1007/s11071-017-3941-z
– ident: ref48
  doi: 10.1007/s00500-018-3256-0
– ident: ref21
  doi: 10.4028/www.scientific.net/AMM.50-51.536
– start-page: 54
  year: 2009
  ident: ref37
  publication-title: Hydroacoustics Principle
– ident: ref18
  doi: 10.1016/0022-460X(80)90454-X
– ident: ref24
  doi: 10.1016/j.procir.2016.07.009
– ident: ref29
  doi: 10.1016/j.ijmecsci.2016.06.023
– ident: ref17
  doi: 10.1016/0022-460X(80)90453-8
– ident: ref6
  doi: 10.1016/j.ymssp.2019.07.007
– ident: ref16
  doi: 10.1016/0022-460X(80)90452-6
– ident: ref3
  doi: 10.1016/j.jngse.2015.05.006
– ident: ref45
  doi: 10.1016/j.copbio.2019.08.010
– ident: ref9
  doi: 10.1007/s12206-018-1004-0
– ident: ref5
  doi: 10.2118/182760-PA
– volume: 32
  start-page: 320
  year: 2008
  ident: ref10
  article-title: Study on prediction of submarine acoustic fault based on MIMO model
  publication-title: J Wuhan Univ Technol
– ident: ref19
  doi: 10.1109/JSYST.2016.2542179
– ident: ref46
  doi: 10.1007/s00521-015-1850-y
– ident: ref15
  doi: 10.1016/j.marstruc.2018.07.004
– ident: ref44
  doi: 10.1016/j.compind.2019.02.001
– ident: ref35
  doi: 10.3390/s18030782
– ident: ref41
  doi: 10.1063/5.0020098
– ident: ref43
  doi: 10.1016/j.neucom.2018.06.078
– volume: 40
  start-page: 78
  year: 2019
  ident: ref34
  article-title: Feature extraction method for gearbox local fault based on CEEMDAN-SQI-SVD
  publication-title: Chin J Sci Instrum
– ident: ref40
  doi: 10.1121/1.4943544
– ident: ref4
  doi: 10.1109/TIA.2016.2608958
– volume: 204
  year: 2020
  ident: ref39
  article-title: Investigating the sound power level of a simplified underwater vehicle induced by flow separation
  publication-title: Ocean Eng
– ident: ref32
  doi: 10.1109/TII.2018.2866549
– ident: ref12
  doi: 10.1007/s11001-014-9223-y
– start-page: 69
  year: 2013
  ident: ref23
  publication-title: Vibration of Shells
– ident: ref14
  doi: 10.1016/j.jsv.2016.11.020
– volume: 679
  start-page: 12036
  year: 2016
  ident: ref11
  article-title: An underwater ship fault detection method based on Sonar image processing
  publication-title: Proc J Phys Conf
  doi: 10.1088/1742-6596/679/1/012036
– volume: 13
  start-page: 1
  year: 2014
  ident: ref2
  article-title: Failure mode and effect analysis of Subsea multiphase pump equipment
  publication-title: Matecon
– volume: 30
  start-page: 1
  year: 2019
  ident: ref38
  article-title: Determination of sound power level by using a microphone array and conventional methods
  publication-title: Vib Phys Syst
– ident: ref13
  doi: 10.1007/s11001-014-9227-7
– ident: ref36
  doi: 10.1016/j.jsv.2016.09.012
– ident: ref27
  doi: 10.1016/0022-460X(80)90663-X
– start-page: 1
  year: 1941
  ident: ref25
  publication-title: Theory of Plates and Shells
SSID ssj0007647
Score 2.466815
Snippet Due to difficulty in disposing of unsteady and nonlinear acoustic signals by conventional signal process methods, it remains a challenge to develop the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Acoustic noise
Acoustics
Back propagation
Back propagation networks
Convolution
Deep convolution processing feature (DCPM)
Empirical analysis
Fault diagnosis
Feature extraction
Flow theory
genetic algorithm-backpropagation neural network (GANN)
Genetic algorithms
Hilbert transformation
Load flow
Neural networks
Noise reduction
Power flow
power flow theory (PFT)
Signal processing
Sonar equipment
Underwater acoustics
underwater pump system
Underwater structures
Vibrations
Title A Novel Method for Mechanical Fault Diagnosis of Underwater Pump Motors Based on Power Flow Theory
URI https://ieeexplore.ieee.org/document/9311153
https://www.proquest.com/docview/2487437524
Volume 70
WOSCitedRecordID wos000616309500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSyQxEC1UXHAPq6srO65KDnsR7J1MPjtH191BDzPMQcFb051UgzBMy3zo37eS7hkElwVvOSQQ-nWl6iVV9QB-eo6am1IQLeE2U7UOWUl-IPNGe-15kDLkSWzCjsf5w4ObbMHlphYGEVPyGf6Kw_SWHxq_ildlfSfJMrXchm1rbVurtTl1rVFtf8wBGTBFBesnSe76d7cjIoKC-ClXSsZatjcuKGmqvDuIk3cZ7n9sXwfwpYsi2VUL-1fYwtkhfH7TW_AQPqXcTr84guqKjZtnnLJRUotmFKbSMFb8RoDYsFxNl-xPm3L3uGBNzZIY0gtFoXM2IbjZqImaPOw3ebzAmhmbRGk1Npw2L6yt7f8G98O_d9c3WSetkHnhBstMDKStuEIZQmlQ5j6UXOcS81poWepKWYXCGayryqnSCV8HzEVFXM4FTrPkMezMmhl-BxZqMmETHEolVamqyqs6SO2NCMajwR7011-78F3f8Sh_MS0S_-CuIHyKiE_R4dODi82Kp7bnxn_mHkU8NvM6KHpwuga06IxyUQgiZ0paLdTJv1f9gD0RU1bSDcsp7CznKzyDXf-8fFzMz9P_9gruM9Hz
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5RHmo5UApUhNLiA5dKLHH82vWRFiJQSZRDKnFb7dqzElKURXnA32fs3URIrSr15oMtWfvteOazZ-YDOHccNTeFIFrC00RV2icF-YHEGe20415Kn0WxiXQ4zB4e7GgDLta1MIgYk8_wMgzjW76v3TJclXWtJMvU8h1saaVEr6nWWp-7qVFNh8wemTDFBatHSW6747sBUUFBDJUrJUM12xsnFFVV_jiKo3_pf_y_ne3DXhtHsqsG-E-wgdMD2H3TXfAAdmJ2p5sfQnnFhvUzTtgg6kUzClRpGGp-A0SsXywnC3bdJN09zlldsSiH9EJx6IyNCHA2qIMqD_tBPs-zespGQVyN9Sf1C2uq-4_gd_9m_PM2acUVEidsb5GInkxLrlB6XxiUmfMF15nErBJaFrpUqUJhDVZlaVVhhas8ZqIkNmc9p1nyM2xO6ykeA_MVGbHxFqWSqlBl6VTlpXZGeOPQYAe6q6-du7bzeBDAmOSRgXCbEz55wCdv8enA9_WKp6brxj_mHgY81vNaKDpwugI0b81ynguiZ0qmWqiTv686g_e348F9fn83_PUFPoiQwBLvW05hczFb4lfYds-Lx_nsW_z3XgEC-dU6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Method+for+Mechanical+Fault+Diagnosis+of+Underwater+Pump+Motors+Based+on+Power+Flow+Theory&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Jiang%2C+Weixiong&rft.au=Wang%2C+Honghui&rft.au=Liu%2C+Guijie&rft.au=Liu%2C+Yonghong&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTIM.2020.3044300&rft.externalDocID=9311153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon