A Novel Method for Mechanical Fault Diagnosis of Underwater Pump Motors Based on Power Flow Theory
Due to difficulty in disposing of unsteady and nonlinear acoustic signals by conventional signal process methods, it remains a challenge to develop the noncontacting-based fault diagnosis techniques for underwater pump systems. Fortunately, the power flow theory (PFT), which has been proposed to ana...
Saved in:
| Published in: | IEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 17 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to difficulty in disposing of unsteady and nonlinear acoustic signals by conventional signal process methods, it remains a challenge to develop the noncontacting-based fault diagnosis techniques for underwater pump systems. Fortunately, the power flow theory (PFT), which has been proposed to analyze the fluid-solid interaction of underwater structures, provides great potential to process underwater acoustic signals. However, this potential has not been exploited in literature yet. In order to bridge this research gap, this article proposes a novel fault diagnosis method based on PFT, deep convolution processing method (DCPM), and genetic algorithm-backpropagation neural network (GANN). This method includes three steps: firstly, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is employed to decrease the proportion of the noise components in the original acoustic signals; and the radiated power flow is deduced from the denoised acoustics by PFT. Then, the Hilbert transform is conducted to obtain the Hilbert spectra of the radiated power flow signals and the deep convolution processing feature (DCPF) is extracted from the Hilbert spectra by DCPM. Lastly, the radiated power level (RPL) is calculated directly from the radiated power flow signals. The DCPF and RPL are input into a GANN for fault diagnosis. The effectiveness of the proposed method is validated using an underwater acoustic experiment. The results show that the diagnosis performance is competitive with the other five existing methods in terms of accuracy and efficiency. |
|---|---|
| AbstractList | Due to difficulty in disposing of unsteady and nonlinear acoustic signals by conventional signal process methods, it remains a challenge to develop the noncontacting-based fault diagnosis techniques for underwater pump systems. Fortunately, the power flow theory (PFT), which has been proposed to analyze the fluid–solid interaction of underwater structures, provides great potential to process underwater acoustic signals. However, this potential has not been exploited in literature yet. In order to bridge this research gap, this article proposes a novel fault diagnosis method based on PFT, deep convolution processing method (DCPM), and genetic algorithm-backpropagation neural network (GANN). This method includes three steps: firstly, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is employed to decrease the proportion of the noise components in the original acoustic signals; and the radiated power flow is deduced from the denoised acoustics by PFT. Then, the Hilbert transform is conducted to obtain the Hilbert spectra of the radiated power flow signals and the deep convolution processing feature (DCPF) is extracted from the Hilbert spectra by DCPM. Lastly, the radiated power level (RPL) is calculated directly from the radiated power flow signals. The DCPF and RPL are input into a GANN for fault diagnosis. The effectiveness of the proposed method is validated using an underwater acoustic experiment. The results show that the diagnosis performance is competitive with the other five existing methods in terms of accuracy and efficiency. |
| Author | Liu, Yonghong Cai, Baoping Wang, Honghui Jiang, Weixiong Liu, Guijie Li, Zhixiong |
| Author_xml | – sequence: 1 givenname: Weixiong orcidid: 0000-0002-2193-2611 surname: Jiang fullname: Jiang, Weixiong email: jiangweixiong@stu.ouc.edu.cn organization: Department of Mechanical and Electrical Engineering, Key Laboratory of Ocean Engineering of Shang Dong Province, Ocean University of China, Qingdao, China – sequence: 2 givenname: Honghui orcidid: 0000-0002-9640-6237 surname: Wang fullname: Wang, Honghui email: whh4358@ouc.edu.cn organization: Department of Mechanical and Electrical Engineering, Key Laboratory of Ocean Engineering of Shang Dong Province, Ocean University of China, Qingdao, China – sequence: 3 givenname: Guijie orcidid: 0000-0002-3353-117X surname: Liu fullname: Liu, Guijie email: liuguijie@ouc.edu.cn organization: Department of Mechanical and Electrical Engineering, Key Laboratory of Ocean Engineering of Shang Dong Province, Ocean University of China, Qingdao, China – sequence: 4 givenname: Yonghong orcidid: 0000-0001-6983-2137 surname: Liu fullname: Liu, Yonghong email: liuyh@upc.edu.cn organization: Department of Electrical and Mechanical Engineering, China University of Petroleum (East China), Qingdao, China – sequence: 5 givenname: Baoping orcidid: 0000-0002-4499-492X surname: Cai fullname: Cai, Baoping email: caibaoping@upc.edu.cn organization: Department of Electrical and Mechanical Engineering, China University of Petroleum (East China), Qingdao, China – sequence: 6 givenname: Zhixiong orcidid: 0000-0002-7265-0008 surname: Li fullname: Li, Zhixiong email: zhixiong.li@ieee.org organization: School of Engineering, Ocean University of China, Qingdao, China |
| BookMark | eNp9kE1PwkAQhjcGEwG9m3jZxHNx9qMfe0QUNQHlAOdm206lpHRxdyvh31sC8eDB00wy7zNv8gxIrzENEnLLYMQYqIfl23zEgcNIgJQC4IL0WRjGgYoi3iN9AJYESobRFRk4twGAOJJxn2Rj-m6-saZz9GtT0NLYbs3XuqlyXdOpbmtPnyr92RhXOWpKumoKtHvt0dJFu93RufHGOvqoHRbUNHRh9t1pWps9Xa7R2MM1uSx17fDmPIdkNX1eTl6D2cfL22Q8C3KumA84E3EGEkVR6AhFkhcawkRgUvJQ6DCTsUSuIiyzTEmteF4WmPBMykQV0KXEkNyf_u6s-WrR-XRjWtt0lSmXSSxFHHLZpeCUyq1xzmKZ7my11faQMkiPJtPOZHo0mZ5Ndkj0B8krr31lGm91Vf8H3p3AChF_e5RgjIVC_AAwYYHw |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_113113 crossref_primary_10_3390_electronics12020410 crossref_primary_10_1002_qre_3597 crossref_primary_10_1002_rob_70019 crossref_primary_10_1016_j_jmsy_2023_08_004 crossref_primary_10_1016_j_wroa_2025_100333 crossref_primary_10_1109_TIM_2024_3417591 crossref_primary_10_1016_j_aei_2024_102576 crossref_primary_10_1016_j_asoc_2025_113138 crossref_primary_10_1109_TEC_2025_3550544 crossref_primary_10_1016_j_aei_2024_102365 crossref_primary_10_1016_j_asoc_2025_112737 crossref_primary_10_1109_TFUZZ_2024_3411389 crossref_primary_10_1016_j_knosys_2025_113430 |
| Cites_doi | 10.1016/j.tws.2004.03.006 10.3390/s18030782 10.1016/j.epsl.2015.06.017 10.1016/0022-460X(80)90662-8 10.1177/1748006X13492954 10.1016/j.measurement.2020.107616 10.1115/1.2930140 10.1007/s11071-017-3941-z 10.1007/s00500-018-3256-0 10.4028/www.scientific.net/AMM.50-51.536 10.1016/0022-460X(80)90454-X 10.1016/j.procir.2016.07.009 10.1016/j.ijmecsci.2016.06.023 10.1016/0022-460X(80)90453-8 10.1016/j.ymssp.2019.07.007 10.1016/0022-460X(80)90452-6 10.1016/j.jngse.2015.05.006 10.1016/j.copbio.2019.08.010 10.1007/s12206-018-1004-0 10.2118/182760-PA 10.1109/JSYST.2016.2542179 10.1007/s00521-015-1850-y 10.1016/j.marstruc.2018.07.004 10.1016/j.compind.2019.02.001 10.1063/5.0020098 10.1016/j.neucom.2018.06.078 10.1121/1.4943544 10.1109/TIA.2016.2608958 10.1109/TII.2018.2866549 10.1007/s11001-014-9223-y 10.1016/j.jsv.2016.11.020 10.1088/1742-6596/679/1/012036 10.1007/s11001-014-9227-7 10.1016/j.jsv.2016.09.012 10.1016/0022-460X(80)90663-X |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2020.3044300 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 17 |
| ExternalDocumentID | 10_1109_TIM_2020_3044300 9311153 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2019YFE0105100 – fundername: Norwegian Research Council (AutoPRO) grantid: 309628 funderid: 10.13039/501100005416 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-2137b04e3dda6e38cda0583e8f253a5b474e296efbb94a92cfde82b4489d0e8f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616309500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:23:21 EDT 2025 Sat Nov 29 04:38:01 EST 2025 Tue Nov 18 21:52:55 EST 2025 Wed Aug 27 04:55:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-2137b04e3dda6e38cda0583e8f253a5b474e296efbb94a92cfde82b4489d0e8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2193-2611 0000-0002-9640-6237 0000-0002-3353-117X 0000-0002-7265-0008 0000-0001-6983-2137 0000-0002-4499-492X |
| PQID | 2487437524 |
| PQPubID | 85462 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2020_3044300 crossref_citationtrail_10_1109_TIM_2020_3044300 proquest_journals_2487437524 ieee_primary_9311153 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref15 xuebin (ref22) 2009; 50 ref36 ref14 zhang (ref10) 2008; 32 ref30 ref33 ref32 bogusawski (ref38) 2019; 30 ref1 ref17 ref16 ref19 ref18 deng (ref39) 2020; 204 shobowale (ref2) 2014; 13 fauske (ref7) 2007; 54 timoshenko (ref25) 1941 yingkui (ref34) 2019; 40 shi (ref11) 2016; 679 ref46 ref24 ref45 ref48 ref26 ref47 ref20 ref42 ref41 oliver (ref23) 2013 ref44 ref21 ref43 chang (ref31) 2016; 42 ref28 ref27 ref29 ref9 liu (ref37) 2009 ref4 ref3 ref6 ref5 ref40 wang (ref8) 2006; 28 |
| References_xml | – volume: 42 start-page: 1300 year: 2016 ident: ref31 article-title: Convolutional neural networks in image understanding publication-title: ACTA Automatica Sinica – ident: ref30 doi: 10.1016/j.tws.2004.03.006 – ident: ref33 doi: 10.3390/s18030782 – ident: ref42 doi: 10.1016/j.epsl.2015.06.017 – ident: ref26 doi: 10.1016/0022-460X(80)90662-8 – ident: ref1 doi: 10.1177/1748006X13492954 – ident: ref47 doi: 10.1016/j.measurement.2020.107616 – volume: 54 start-page: 34 year: 2007 ident: ref7 article-title: Estimation of AUV dynamics for sensor fusion publication-title: Proc 10th Int Conf Inf Fusion – ident: ref28 doi: 10.1115/1.2930140 – volume: 50 start-page: 10 year: 2009 ident: ref22 article-title: Multi-objective optimization design of circular cylindrical ring-stiffened shell of submarine publication-title: Shipbuild China – volume: 28 start-page: 25 year: 2006 ident: ref8 article-title: Sensor fault diagnosis of autonomous underwater vehicle publication-title: Robot – ident: ref20 doi: 10.1007/s11071-017-3941-z – ident: ref48 doi: 10.1007/s00500-018-3256-0 – ident: ref21 doi: 10.4028/www.scientific.net/AMM.50-51.536 – start-page: 54 year: 2009 ident: ref37 publication-title: Hydroacoustics Principle – ident: ref18 doi: 10.1016/0022-460X(80)90454-X – ident: ref24 doi: 10.1016/j.procir.2016.07.009 – ident: ref29 doi: 10.1016/j.ijmecsci.2016.06.023 – ident: ref17 doi: 10.1016/0022-460X(80)90453-8 – ident: ref6 doi: 10.1016/j.ymssp.2019.07.007 – ident: ref16 doi: 10.1016/0022-460X(80)90452-6 – ident: ref3 doi: 10.1016/j.jngse.2015.05.006 – ident: ref45 doi: 10.1016/j.copbio.2019.08.010 – ident: ref9 doi: 10.1007/s12206-018-1004-0 – ident: ref5 doi: 10.2118/182760-PA – volume: 32 start-page: 320 year: 2008 ident: ref10 article-title: Study on prediction of submarine acoustic fault based on MIMO model publication-title: J Wuhan Univ Technol – ident: ref19 doi: 10.1109/JSYST.2016.2542179 – ident: ref46 doi: 10.1007/s00521-015-1850-y – ident: ref15 doi: 10.1016/j.marstruc.2018.07.004 – ident: ref44 doi: 10.1016/j.compind.2019.02.001 – ident: ref35 doi: 10.3390/s18030782 – ident: ref41 doi: 10.1063/5.0020098 – ident: ref43 doi: 10.1016/j.neucom.2018.06.078 – volume: 40 start-page: 78 year: 2019 ident: ref34 article-title: Feature extraction method for gearbox local fault based on CEEMDAN-SQI-SVD publication-title: Chin J Sci Instrum – ident: ref40 doi: 10.1121/1.4943544 – ident: ref4 doi: 10.1109/TIA.2016.2608958 – volume: 204 year: 2020 ident: ref39 article-title: Investigating the sound power level of a simplified underwater vehicle induced by flow separation publication-title: Ocean Eng – ident: ref32 doi: 10.1109/TII.2018.2866549 – ident: ref12 doi: 10.1007/s11001-014-9223-y – start-page: 69 year: 2013 ident: ref23 publication-title: Vibration of Shells – ident: ref14 doi: 10.1016/j.jsv.2016.11.020 – volume: 679 start-page: 12036 year: 2016 ident: ref11 article-title: An underwater ship fault detection method based on Sonar image processing publication-title: Proc J Phys Conf doi: 10.1088/1742-6596/679/1/012036 – volume: 13 start-page: 1 year: 2014 ident: ref2 article-title: Failure mode and effect analysis of Subsea multiphase pump equipment publication-title: Matecon – volume: 30 start-page: 1 year: 2019 ident: ref38 article-title: Determination of sound power level by using a microphone array and conventional methods publication-title: Vib Phys Syst – ident: ref13 doi: 10.1007/s11001-014-9227-7 – ident: ref36 doi: 10.1016/j.jsv.2016.09.012 – ident: ref27 doi: 10.1016/0022-460X(80)90663-X – start-page: 1 year: 1941 ident: ref25 publication-title: Theory of Plates and Shells |
| SSID | ssj0007647 |
| Score | 2.466815 |
| Snippet | Due to difficulty in disposing of unsteady and nonlinear acoustic signals by conventional signal process methods, it remains a challenge to develop the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Acoustic noise Acoustics Back propagation Back propagation networks Convolution Deep convolution processing feature (DCPM) Empirical analysis Fault diagnosis Feature extraction Flow theory genetic algorithm-backpropagation neural network (GANN) Genetic algorithms Hilbert transformation Load flow Neural networks Noise reduction Power flow power flow theory (PFT) Signal processing Sonar equipment Underwater acoustics underwater pump system Underwater structures Vibrations |
| Title | A Novel Method for Mechanical Fault Diagnosis of Underwater Pump Motors Based on Power Flow Theory |
| URI | https://ieeexplore.ieee.org/document/9311153 https://www.proquest.com/docview/2487437524 |
| Volume | 70 |
| WOSCitedRecordID | wos000616309500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSyQxEC1UXHAPq6srO65KDnsR7J1MPjtH191BDzPMQcFb051UgzBMy3zo37eS7hkElwVvOSQQ-nWl6iVV9QB-eo6am1IQLeE2U7UOWUl-IPNGe-15kDLkSWzCjsf5w4ObbMHlphYGEVPyGf6Kw_SWHxq_ildlfSfJMrXchm1rbVurtTl1rVFtf8wBGTBFBesnSe76d7cjIoKC-ClXSsZatjcuKGmqvDuIk3cZ7n9sXwfwpYsi2VUL-1fYwtkhfH7TW_AQPqXcTr84guqKjZtnnLJRUotmFKbSMFb8RoDYsFxNl-xPm3L3uGBNzZIY0gtFoXM2IbjZqImaPOw3ebzAmhmbRGk1Npw2L6yt7f8G98O_d9c3WSetkHnhBstMDKStuEIZQmlQ5j6UXOcS81poWepKWYXCGayryqnSCV8HzEVFXM4FTrPkMezMmhl-BxZqMmETHEolVamqyqs6SO2NCMajwR7011-78F3f8Sh_MS0S_-CuIHyKiE_R4dODi82Kp7bnxn_mHkU8NvM6KHpwuga06IxyUQgiZ0paLdTJv1f9gD0RU1bSDcsp7CznKzyDXf-8fFzMz9P_9gruM9Hz |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5RHmo5UApUhNLiA5dKLHH82vWRFiJQSZRDKnFb7dqzElKURXnA32fs3URIrSr15oMtWfvteOazZ-YDOHccNTeFIFrC00RV2icF-YHEGe20415Kn0WxiXQ4zB4e7GgDLta1MIgYk8_wMgzjW76v3TJclXWtJMvU8h1saaVEr6nWWp-7qVFNh8wemTDFBatHSW6747sBUUFBDJUrJUM12xsnFFVV_jiKo3_pf_y_ne3DXhtHsqsG-E-wgdMD2H3TXfAAdmJ2p5sfQnnFhvUzTtgg6kUzClRpGGp-A0SsXywnC3bdJN09zlldsSiH9EJx6IyNCHA2qIMqD_tBPs-zespGQVyN9Sf1C2uq-4_gd_9m_PM2acUVEidsb5GInkxLrlB6XxiUmfMF15nErBJaFrpUqUJhDVZlaVVhhas8ZqIkNmc9p1nyM2xO6ykeA_MVGbHxFqWSqlBl6VTlpXZGeOPQYAe6q6-du7bzeBDAmOSRgXCbEz55wCdv8enA9_WKp6brxj_mHgY81vNaKDpwugI0b81ynguiZ0qmWqiTv686g_e348F9fn83_PUFPoiQwBLvW05hczFb4lfYds-Lx_nsW_z3XgEC-dU6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Method+for+Mechanical+Fault+Diagnosis+of+Underwater+Pump+Motors+Based+on+Power+Flow+Theory&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Jiang%2C+Weixiong&rft.au=Wang%2C+Honghui&rft.au=Liu%2C+Guijie&rft.au=Liu%2C+Yonghong&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTIM.2020.3044300&rft.externalDocID=9311153 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |