Majorization-Minimization Aided Hybrid Transceivers for MIMO Interference Channels

The potential of deploying large-scale antenna arrays in future wireless systems has stimulated extensive research on hybrid transceiver designs aiming to approximate the optimal fully-digital schemes with much reduced hardware cost and signal processing complexity. Generally, this hybrid transceive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 68; S. 1
Hauptverfasser: Gong, Shiqi, Xing, Chengwen, Lau, Vincent K. N., Chen, Sheng, Hanzo, Lajos
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The potential of deploying large-scale antenna arrays in future wireless systems has stimulated extensive research on hybrid transceiver designs aiming to approximate the optimal fully-digital schemes with much reduced hardware cost and signal processing complexity. Generally, this hybrid transceiver structure requires a joint design of analog and digital processing to enable both beamsteering and spatial multiplexing gains. In this paper, we develop various weighted mean-square-error minimization (WMMSE) based hybrid transceiver designs over multiple-input multiple-output (MIMO) interference channels at both millimeter wave (mmWave) and microwave frequencies. Firstly, a heuristic joint design of hybrid precoder and combiner using alternating optimization is proposed, in which the majorization-minimization (MM) method is utilized to design the analog precoder and combiner under unit-modulus constraints. It is demonstrated that this scheme achieves comparable performance to that of the fully-digital WMMSE solution. To further reduce the complexity imposed, a phase projection based two-stage scheme is proposed to decouple the designs of the analog and digital { precoder-combiner}. Secondly, inspired by the fully-digital solutions based on the block-diagonalization zero-forcing (BD-ZF) and signal-to-leakage-plus-noise ratio (SLNR) criteria, low-complexity MM-based BD-ZF and SLNR hybrid designs are proposed for approximating the corresponding fully-digital solutions. Thirdly, the partially-connected hybrid structure conceived for reducing system hardware cost and power consumption is considered, for which the MM-based alternating optimization still works. Our numerical results characterize the performance of the proposed schemes in comparison to the existing benchmarkers.
AbstractList The potential of deploying large-scale antenna arrays in future wireless systems has stimulated extensive research on hybrid transceiver designs aiming to approximate the optimal fully-digital schemes with much reduced hardware cost and signal processing complexity. Generally, this hybrid transceiver structure requires a joint design of analog and digital processing to enable both beamsteering and spatial multiplexing gains. In this paper, we develop various weighted mean-square-error minimization (WMMSE) based hybrid transceiver designs over multiple-input multiple-output (MIMO) interference channels at both millimeter wave (mmWave) and microwave frequencies. Firstly, a heuristic joint design of hybrid precoder and combiner using alternating optimization is proposed, in which the majorization-minimization (MM) method is utilized to design the analog precoder and combiner under unit-modulus constraints. It is demonstrated that this scheme achieves comparable performance to that of the fully-digital WMMSE solution. To further reduce the complexity imposed, a phase projection based two-stage scheme is proposed to decouple the designs of the analog and digital { precoder-combiner}. Secondly, inspired by the fully-digital solutions based on the block-diagonalization zero-forcing (BD-ZF) and signal-to-leakage-plus-noise ratio (SLNR) criteria, low-complexity MM-based BD-ZF and SLNR hybrid designs are proposed for approximating the corresponding fully-digital solutions. Thirdly, the partially-connected hybrid structure conceived for reducing system hardware cost and power consumption is considered, for which the MM-based alternating optimization still works. Our numerical results characterize the performance of the proposed schemes in comparison to the existing benchmarkers.
The potential of deploying large-scale antenna arrays in future wireless systems has stimulated extensive research on hybrid transceiver designs aiming to approximate the optimal fully-digital schemes with much reduced hardware cost, and signal processing complexity. Generally, this hybrid transceiver structure requires a joint design of analog, and digital processing to enable both beamsteering, and spatial multiplexing gains. In this paper, we develop various weighted mean-square-error minimization (WMMSE) based hybrid transceiver designs for [Formula Omitted]-user multiple-input multiple-output (MIMO) interference systems, which are applicable to both millimeter wave (mmWave) channels, and Rayleigh fading channels. Firstly, a heuristic joint design of hybrid precoder, and combiner using alternating optimization is proposed, in which the majorization-minimization (MM) method is utilized to design the analog precoder, and combiner under unit-modulus constraints. It is demonstrated that this scheme achieves comparable performance to the fully-digital WMMSE solution. To further reduce the computational complexity, a phase projection based two-stage scheme is proposed to decouple the designs of the analog, and digital precoder/combiner. Secondly, inspired by the fully-digital solutions based on the block-diagonalization zero-forcing (BD-ZF), and signal-to-leakage-plus-noise ratio (SLNR) criteria, the low-complexity MM-based BD-ZF, and SLNR hybrid designs are proposed, respectively, for approximating the corresponding fully-digital solutions. Thirdly, the partially-connected hybrid structure conceived for reducing system hardware cost, and power consumption is considered, for which the MM-based alternating optimization algorithm still works. Our numerical results characterize the sum rate performance of all proposed hybrid designs in comparison to the existing benchmarks.
Author Gong, Shiqi
Lau, Vincent K. N.
Xing, Chengwen
Hanzo, Lajos
Chen, Sheng
Author_xml – sequence: 1
  givenname: Shiqi
  surname: Gong
  fullname: Gong, Shiqi
  email: gsqyx@163.com
  organization: Department of Electrical Engineering, Beijing Institute of Technology, Beijing China 100081 (e-mail: gsqyx@163.com)
– sequence: 2
  givenname: Chengwen
  surname: Xing
  fullname: Xing, Chengwen
  email: xingchengwen@gmail.com
  organization: School of Information and Electronics, Beijing Institute of Technology, China, Beijing China 100081 (e-mail: xingchengwen@gmail.com)
– sequence: 3
  givenname: Vincent K. N.
  surname: Lau
  fullname: Lau, Vincent K. N.
  email: eeknlau@ust.hk
  organization: Hong Kong Hong Kong (e-mail: eeknlau@ust.hk)
– sequence: 4
  givenname: Sheng
  surname: Chen
  fullname: Chen, Sheng
  email: sqc@ecs.soton.ac.uk
  organization: Electronics and Computer Science, University of Southampton, Southampton United Kingdom of Great Britain and Northern Ireland SO17 1BJ (e-mail: sqc@ecs.soton.ac.uk)
– sequence: 5
  givenname: Lajos
  surname: Hanzo
  fullname: Hanzo, Lajos
  email: lh@ecs.soton.ac.uk
  organization: University of Southampton, School of Electronics & Computer Science, United Kingdom, Hants United Kingdom of Great Britain and Northern Ireland SO17 1BJ (e-mail: lh@ecs.soton.ac.uk)
BookMark eNp9kEFLAzEQhYNUsK3eBS8Lnrcm2exucixFbaFLRSt4C9lkFlPabE22Qv31prZ48CBzmHnwvhnmDVDPtQ4QuiZ4RAgWd8uXpxHFFI8yTHjO-BnqE8FIillZ9OKM8yzNefl2gQYhrDAmjImij54rtWq9_VKdbV1aWWc3J5GMrQGTTPe1tyZZeuWCBvsJPiRN65NqVi2SmevAN-DBaUgm78o5WIdLdN6odYCrUx-i14f75WSazhePs8l4nmoqSJdSbIzJMFCjWAZM5xRKFhWrVSGarNZcKFYQLSCHMq8pIQYEL3RjQBvOeTZEt8e9W99-7CB0ctXuvIsnJWWMFrkQhEZXcXRp34bgoZHadj8Pdl7ZtSRYHvKTMT95yE-e8osg_gNuvd0ov_8PuTkiFgB-7YKULFb2DVh-fiI
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_JIOT_2024_3436831
crossref_primary_10_1109_LCOMM_2022_3149909
crossref_primary_10_1109_TCOMM_2024_3379360
crossref_primary_10_1109_ACCESS_2024_3369445
crossref_primary_10_1109_TSP_2025_3562858
crossref_primary_10_1109_TWC_2022_3217145
crossref_primary_10_1109_JIOT_2023_3290108
crossref_primary_10_1109_JIOT_2023_3317421
crossref_primary_10_1109_TWC_2022_3216315
crossref_primary_10_1109_TWC_2022_3155157
crossref_primary_10_1109_JSAC_2025_3531530
crossref_primary_10_1109_TAES_2023_3344391
crossref_primary_10_1109_TCOMM_2023_3249788
crossref_primary_10_1631_FITEE_2400433
crossref_primary_10_1109_TWC_2023_3331054
crossref_primary_10_1109_TWC_2023_3304759
crossref_primary_10_1016_j_iot_2022_100512
crossref_primary_10_1109_TWC_2025_3558060
crossref_primary_10_1109_TWC_2023_3269056
crossref_primary_10_1016_j_dcan_2023_07_004
crossref_primary_10_1109_TVT_2021_3131514
crossref_primary_10_32604_jiot_2024_054791
crossref_primary_10_1109_TWC_2024_3447834
crossref_primary_10_1109_TWC_2022_3156732
crossref_primary_10_1109_JSAC_2022_3196099
crossref_primary_10_1109_TCOMM_2022_3199020
crossref_primary_10_1109_TWC_2022_3205322
Cites_doi 10.1109/MSP.2011.2178495
10.1109/TCOMM.2015.2502954
10.1109/TSP.2016.2601299
10.1561/0100000018
10.1109/ACCESS.2018.2872953
10.1109/TSP.2018.2806358
10.1109/TSP.2017.2787115
10.1109/TSP.2003.821107
10.1109/JSAC.2014.2328151
10.1109/ACCESS.2015.2514261
10.1109/LWC.2015.2409268
10.1016/S0024-3795(97)00020-7
10.1109/JSTSP.2016.2520912
10.1109/JSAC.2017.2698958
10.1109/ACCESS.2018.2793223
10.1109/TSP.2011.2147784
10.1109/TWC.2015.2455980
10.1109/MCOM.2017.1600400
10.1007/978-0-387-68276-1
10.1109/TSP.2014.2337840
10.1109/LWC.2014.2363831
10.1109/JSTSP.2014.2317671
10.1109/MMW.2002.1004054
10.1109/ACCESS.2017.2754979
10.1287/moor.1070.0262
10.1109/TVT.2014.2346400
10.1109/TAP.2002.1011224
10.1109/JSTSP.2016.2538178
10.1109/TSP.2019.2912833
10.1109/TCOMM.2018.2829511
10.1109/MCOM.2014.6736750
10.1109/JSAC.2013.130205
10.1109/LCOMM.2010.091710.100868
10.1109/SAM.2016.7569693
10.1137/120891009
10.1109/TWC.2014.011714.130846
10.1109/TWC.2016.2628357
10.1109/JSTSP.2016.2523903
10.1109/ICC40277.2020.9149227
10.1109/TWC.2015.2403364
10.1109/TWC.2015.2390637
10.1109/TWC.2007.360373
10.1109/TSP.2017.2699643
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2020.3018548
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1
ExternalDocumentID 10_1109_TSP_2020_3018548
9174747
Genre orig-research
GrantInformation_xml – fundername: L. Hanzo would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council projects EPNoo45581 EPPO342841 COALESCE of the Royal Societys Global Challenges Research Fund Grant as well as of the European Research Councils Advanced Fellow Grant QuantCom.
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-20ddd30e2da43e4c52e74e2d4ba69f3bc89a461c9e5e75b211de986cfdecd8883
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569565400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:13:42 EDT 2025
Tue Nov 18 21:09:35 EST 2025
Sat Nov 29 04:10:52 EST 2025
Wed Aug 27 02:33:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-20ddd30e2da43e4c52e74e2d4ba69f3bc89a461c9e5e75b211de986cfdecd8883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4081-1954
0000-0001-6882-600X
0000-0003-3966-8000
0000-0002-2636-5214
PQID 2442659912
PQPubID 85478
PageCount 1
ParticipantIDs ieee_primary_9174747
proquest_journals_2442659912
crossref_citationtrail_10_1109_TSP_2020_3018548
crossref_primary_10_1109_TSP_2020_3018548
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref2
  doi: 10.1109/MSP.2011.2178495
– ident: ref16
  doi: 10.1109/TCOMM.2015.2502954
– ident: ref35
  doi: 10.1109/TSP.2016.2601299
– ident: ref37
  doi: 10.1561/0100000018
– ident: ref15
  doi: 10.1109/ACCESS.2018.2872953
– ident: ref22
  doi: 10.1109/TSP.2018.2806358
– ident: ref38
  doi: 10.1109/TSP.2017.2787115
– ident: ref30
  doi: 10.1109/TSP.2003.821107
– ident: ref10
  doi: 10.1109/JSAC.2014.2328151
– ident: ref9
  doi: 10.1109/ACCESS.2015.2514261
– ident: ref21
  doi: 10.1109/LWC.2015.2409268
– ident: ref43
  doi: 10.1016/S0024-3795(97)00020-7
– ident: ref12
  doi: 10.1109/JSTSP.2016.2520912
– ident: ref13
  doi: 10.1109/JSAC.2017.2698958
– ident: ref17
  doi: 10.1109/ACCESS.2018.2793223
– ident: ref40
  doi: 10.1109/TSP.2011.2147784
– ident: ref27
  doi: 10.1109/TWC.2015.2455980
– ident: ref6
  doi: 10.1109/MCOM.2017.1600400
– ident: ref42
  doi: 10.1007/978-0-387-68276-1
– ident: ref33
  doi: 10.1109/TSP.2014.2337840
– ident: ref11
  doi: 10.1109/LWC.2014.2363831
– ident: ref1
  doi: 10.1109/JSTSP.2014.2317671
– ident: ref8
  doi: 10.1109/MMW.2002.1004054
– ident: ref25
  doi: 10.1109/ACCESS.2017.2754979
– ident: ref39
  doi: 10.1287/moor.1070.0262
– ident: ref24
  doi: 10.1109/TVT.2014.2346400
– ident: ref41
  doi: 10.1109/TAP.2002.1011224
– ident: ref23
  doi: 10.1109/JSTSP.2016.2538178
– ident: ref18
  doi: 10.1109/TSP.2019.2912833
– ident: ref28
  doi: 10.1109/TCOMM.2018.2829511
– ident: ref4
  doi: 10.1109/MCOM.2014.6736750
– ident: ref5
  doi: 10.1109/JSAC.2013.130205
– ident: ref32
  doi: 10.1109/LCOMM.2010.091710.100868
– ident: ref29
  doi: 10.1109/SAM.2016.7569693
– ident: ref36
  doi: 10.1137/120891009
– ident: ref7
  doi: 10.1109/TWC.2014.011714.130846
– ident: ref26
  doi: 10.1109/TWC.2016.2628357
– ident: ref19
  doi: 10.1109/JSTSP.2016.2523903
– ident: ref3
  doi: 10.1109/ICC40277.2020.9149227
– ident: ref34
  doi: 10.1109/TWC.2015.2403364
– ident: ref14
  doi: 10.1109/TWC.2015.2390637
– ident: ref31
  doi: 10.1109/TWC.2007.360373
– ident: ref20
  doi: 10.1109/TSP.2017.2699643
SSID ssj0014496
Score 2.5099528
Snippet The potential of deploying large-scale antenna arrays in future wireless systems has stimulated extensive research on hybrid transceiver designs aiming to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Antenna arrays
Channels
Complexity
Hardware
Hybrid structures
Hybrid transceiver designs
Interference
majorization-minimization
Millimeter waves
MIMO (control systems)
MIMO interference channels
Optimization
Orthogonal Frequency Division Multiplexing
Power consumption
Signal processing
Transceivers
WMMSE
Title Majorization-Minimization Aided Hybrid Transceivers for MIMO Interference Channels
URI https://ieeexplore.ieee.org/document/9174747
https://www.proquest.com/docview/2442659912
Volume 68
WOSCitedRecordID wos000569565400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i6Sg5eBOv2kTbNcRFFD6viA_ZW8pjCinZldxX8906y2UVQBCmUBpISZpp-82UyMwDHso65sUkeaa6IoPBCR1plGCUCs1oQa7aa-2IT4uam7Pfl3QKczmNhENEfPsMz9-h9-XZo3t1WWYeoBadrERaFENNYrbnHgHNfi4vMhSzKS9GfuSRj2Xl8uCMimBI_jQmdXKWfbxDka6r8-BF7dLlc_9-8NmAtWJGsO1X7JixgswWr33ILbsN9Tz0PRyHKMuoNmsFraLDuwKJlV58uWIt5sDLoj2cwsmBZ77p3y_xGYQgFZC4CoSEM3YGny4vH86soFFCITCqTCa0Aa20WY2oVz5CbPEXBqcW1KmSdaVNKxYvESMxR5Jq4oEVZFqa2aCxR42wXlpphg3vASiNyJeJUlbnmBOul1LVVsU0yuvOkbEFnJtPKhOzirsjFS-VZRiwr0kLltFAFLbTgZD7ibZpZ44--207q835B4C1oz9RWhaU3rsheSYuczN50__dRB7Di3j3dR2nD0mT0joewbD4mg_HoyH9VX_Icyu0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8KGgf1FbFq9rugy8F08vHbpJ9lFI50ZxiT7i3sB8TONGc3J1C__vO7u0dglIogZCFXbLMZPOb387ODMCJbGJubCIizRURFJ7rSKsMo6TArCmINVvNfbGJot8vh0N5swKny1gYRPSHz_CHe_S-fDs2z26rrEvUgtO1CuuC8zSZR2stfQac-2pcZDBkkSiL4cIpGcvu4PcNUcGUGGpM-ORq_bwCIV9V5c2v2OPL-fb_zWwHtoIdyc7miv8EK9h-ho-vsgvuwm2l7seTEGcZVaN29Bga7Gxk0bLeHxeuxTxcGfQHNBjZsKy6qK6Z3yoMwYDMxSC0hKJ7cHf-a_CzF4USCpFJZTKjNWCtzWJMreIZciNSLDi1uFa5bDJtSql4nhiJAguhiQ1alGVuGovGEjnO9mGtHbd4AKw0hVBFnKpSaE7AXkrdWBXbJKM7T8oOdBcyrU3IL-7KXDzUnmfEsiYt1E4LddBCB74vRzzNc2v8o--uk_qyXxB4B44WaqvD4pvWZLGkuSDDN_3y_qhvsNEbVFf11UX_8hA23XvmuypHsDabPOMxfDAvs9F08tV_YX8BqgvONA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Majorization-Minimization+Aided+Hybrid+Transceivers+for+MIMO+Interference+Channels&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Gong%2C+Shiqi&rft.au=Xing%2C+Chengwen&rft.au=Lau%2C+Vincent+K.+N.&rft.au=Chen%2C+Sheng&rft.date=2020-01-01&rft.pub=IEEE&rft.issn=1053-587X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTSP.2020.3018548&rft.externalDocID=9174747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon