Implicit steepest descent algorithm for optimization with orthogonality constraints
Optimization problems with orthogonality constraints appear widely in applications from science and engineering. We address these types of problems from a numerical approach. Our new framework combines the steepest gradient descent, using implicit information, with a projection operator in order to...
Saved in:
| Published in: | Optimization letters Vol. 16; no. 6; pp. 1773 - 1797 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2022
|
| Subjects: | |
| ISSN: | 1862-4472, 1862-4480 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Optimization problems with orthogonality constraints appear widely in applications from science and engineering. We address these types of problems from a numerical approach. Our new framework combines the steepest gradient descent, using implicit information, with a projection operator in order to construct a feasible sequence of points. In addition, we adopt an adaptive Barzilai–Borwein steplength mixed with a globalization technique in order to speed-up the convergence of our procedure. The global convergence, and some theoretical related to our algorithm are proved. The effectiveness of our proposed algorithm is demonstrated on a variety of problems including Rayleigh quotient maximization, heterogeneous quadratics minimization, weighted orthogonal procrustes problems and total energy minimization. Numerical results show that the new procedure can outperform some state of the art solvers on some practically problems. |
|---|---|
| ISSN: | 1862-4472 1862-4480 |
| DOI: | 10.1007/s11590-021-01801-5 |