Tool Wear Prediction via Multidimensional Stacked Sparse Autoencoders With Feature Fusion

Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity. Inspired by the successful application of deep learning in many condition monitoring tasks. In this article, a novel modeling framework is presented, which includes multiple stacked sparse a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics Jg. 16; H. 8; S. 5150 - 5159
Hauptverfasser: Shi, Chengming, Luo, Bo, He, Songping, Li, Kai, Liu, Hongqi, Li, Bin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1551-3203, 1941-0050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!