Sample-Efficient Low Rank Phase Retrieval

This work studies the Low Rank Phase Retrieval (LRPR) problem: recover an <inline-formula> <tex-math notation="LaTeX">n \times q </tex-math></inline-formula> rank-<inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formul...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 67; no. 12; pp. 8190 - 8206
Main Authors: Nayer, Seyedehsara, Vaswani, Namrata
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This work studies the Low Rank Phase Retrieval (LRPR) problem: recover an <inline-formula> <tex-math notation="LaTeX">n \times q </tex-math></inline-formula> rank-<inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> matrix <inline-formula> <tex-math notation="LaTeX">{ \boldsymbol {X}^{\ast}} </tex-math></inline-formula> from <inline-formula> <tex-math notation="LaTeX">\boldsymbol {y}_{k} = | \boldsymbol {A}_{k}^\top \boldsymbol {x}^{\ast} _{k}| </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">k=1, 2,\ldots, q </tex-math></inline-formula>, when each <inline-formula> <tex-math notation="LaTeX">\boldsymbol {y}_{k} </tex-math></inline-formula> is an m-length vector containing independent phaseless linear projections of <inline-formula> <tex-math notation="LaTeX">\boldsymbol {x}^{\ast}_{k} </tex-math></inline-formula>. Here <inline-formula> <tex-math notation="LaTeX">|.| </tex-math></inline-formula> takes element-wise magnitudes of a vector. The different matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol {A}_{k} </tex-math></inline-formula> are i.i.d. and each contains i.i.d. standard Gaussian entries. We obtain an improved guarantee for AltMinLowRaP, which is an Alternating Minimization solution to LRPR that was introduced and studied in our recent work. As long as the right singular vectors of <inline-formula> <tex-math notation="LaTeX">{ \boldsymbol {X}^{\ast}} </tex-math></inline-formula> satisfy the incoherence assumption, we can show that the AltMinLowRaP estimate converges geometrically to <inline-formula> <tex-math notation="LaTeX">{ \boldsymbol {X}^{\ast}} </tex-math></inline-formula> if the total number of measurements <inline-formula> <tex-math notation="LaTeX">mq \gtrsim nr^{2} (r + \log (1/\epsilon)) </tex-math></inline-formula>. In addition, we also need <inline-formula> <tex-math notation="LaTeX">m \gtrsim max(r, \log q, \log n) </tex-math></inline-formula> because of the specific asymmetric nature of our problem. Compared to our recent work, we improve the sample complexity of the AltMin iterations by a factor of <inline-formula> <tex-math notation="LaTeX">r^{2} </tex-math></inline-formula>, and that of the initialization by a factor of <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula>. We argue, based on comparison with related well-studied problems, why the above sample complexity cannot be improved any further for non-convex solutions to LRPR. We also extend our result to the noisy case; we prove stability to corruption by small additive noise.
AbstractList This work studies the Low Rank Phase Retrieval (LRPR) problem: recover an [Formula Omitted] rank-[Formula Omitted] matrix [Formula Omitted] from [Formula Omitted], [Formula Omitted], when each [Formula Omitted] is an m-length vector containing independent phaseless linear projections of [Formula Omitted]. Here [Formula Omitted] takes element-wise magnitudes of a vector. The different matrices [Formula Omitted] are i.i.d. and each contains i.i.d. standard Gaussian entries. We obtain an improved guarantee for AltMinLowRaP, which is an Alternating Minimization solution to LRPR that was introduced and studied in our recent work. As long as the right singular vectors of [Formula Omitted] satisfy the incoherence assumption, we can show that the AltMinLowRaP estimate converges geometrically to [Formula Omitted] if the total number of measurements [Formula Omitted]. In addition, we also need [Formula Omitted] because of the specific asymmetric nature of our problem. Compared to our recent work, we improve the sample complexity of the AltMin iterations by a factor of [Formula Omitted], and that of the initialization by a factor of [Formula Omitted]. We argue, based on comparison with related well-studied problems, why the above sample complexity cannot be improved any further for non-convex solutions to LRPR. We also extend our result to the noisy case; we prove stability to corruption by small additive noise.
This work studies the Low Rank Phase Retrieval (LRPR) problem: recover an <inline-formula> <tex-math notation="LaTeX">n \times q </tex-math></inline-formula> rank-<inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> matrix <inline-formula> <tex-math notation="LaTeX">{ \boldsymbol {X}^{\ast}} </tex-math></inline-formula> from <inline-formula> <tex-math notation="LaTeX">\boldsymbol {y}_{k} = | \boldsymbol {A}_{k}^\top \boldsymbol {x}^{\ast} _{k}| </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">k=1, 2,\ldots, q </tex-math></inline-formula>, when each <inline-formula> <tex-math notation="LaTeX">\boldsymbol {y}_{k} </tex-math></inline-formula> is an m-length vector containing independent phaseless linear projections of <inline-formula> <tex-math notation="LaTeX">\boldsymbol {x}^{\ast}_{k} </tex-math></inline-formula>. Here <inline-formula> <tex-math notation="LaTeX">|.| </tex-math></inline-formula> takes element-wise magnitudes of a vector. The different matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol {A}_{k} </tex-math></inline-formula> are i.i.d. and each contains i.i.d. standard Gaussian entries. We obtain an improved guarantee for AltMinLowRaP, which is an Alternating Minimization solution to LRPR that was introduced and studied in our recent work. As long as the right singular vectors of <inline-formula> <tex-math notation="LaTeX">{ \boldsymbol {X}^{\ast}} </tex-math></inline-formula> satisfy the incoherence assumption, we can show that the AltMinLowRaP estimate converges geometrically to <inline-formula> <tex-math notation="LaTeX">{ \boldsymbol {X}^{\ast}} </tex-math></inline-formula> if the total number of measurements <inline-formula> <tex-math notation="LaTeX">mq \gtrsim nr^{2} (r + \log (1/\epsilon)) </tex-math></inline-formula>. In addition, we also need <inline-formula> <tex-math notation="LaTeX">m \gtrsim max(r, \log q, \log n) </tex-math></inline-formula> because of the specific asymmetric nature of our problem. Compared to our recent work, we improve the sample complexity of the AltMin iterations by a factor of <inline-formula> <tex-math notation="LaTeX">r^{2} </tex-math></inline-formula>, and that of the initialization by a factor of <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula>. We argue, based on comparison with related well-studied problems, why the above sample complexity cannot be improved any further for non-convex solutions to LRPR. We also extend our result to the noisy case; we prove stability to corruption by small additive noise.
Author Nayer, Seyedehsara
Vaswani, Namrata
Author_xml – sequence: 1
  givenname: Seyedehsara
  orcidid: 0000-0002-3042-1186
  surname: Nayer
  fullname: Nayer, Seyedehsara
  organization: Department of Electrical and Computer Engineeing, Iowa State University, Ames, IA, USA
– sequence: 2
  givenname: Namrata
  orcidid: 0000-0003-2774-0650
  surname: Vaswani
  fullname: Vaswani, Namrata
  email: namrata@iastate.edu
  organization: Department of Electrical and Computer Engineeing, Iowa State University, Ames, IA, USA
BookMark eNp9kEFLAzEQhYNUsFbvgpcFTx62ZrLJJjlKqVooKLWeQ8xOMHW7W7Op4r93S4sHD56GB-97A98pGTRtg4RcAB0DUH2znC3HjDIYFwBMUXFEhiCEzHUp-IAMKQWVa87VCTntulUfuQA2JNfPdr2pMZ96H1zAJmXz9itb2OY9e3qzHWYLTDHgp63PyLG3dYfnhzsiL3fT5eQhnz_ezya389wxDSmHqvKoSlcCk9JxBopbhii4K8DRV-lkJax1rKqorqhzCrBSjEvtNPfMYzEiV_vdTWw_ttgls2q3selfGia07gep5n2r3LdcbLsuojcuJJtC26RoQ22Amp0W02sxOy3moKUH6R9wE8Paxu__kMs9EhDxt65FIRUtix9w4m29
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2024_3442211
crossref_primary_10_1109_TCI_2023_3263810
crossref_primary_10_1109_TIT_2022_3212374
crossref_primary_10_1109_TIT_2025_3563450
crossref_primary_10_1109_TSP_2022_3208430
Cites_doi 10.1109/TIT.2020.3016183
10.1109/TSP.2017.2684758
10.1109/TSP.2017.2656844
10.1109/TIT.2010.2046205
10.1109/TIT.2020.2984478
10.1214/16-AOS1443
10.1007/s10208-011-9099-z
10.1109/TIT.2019.2891653
10.1002/cpa.21432
10.1214/10-AOS850
10.1109/TCOMM.2009.04.070065
10.1109/TIT.2019.2902924
10.1137/120893707
10.1017/CBO9780511794308.006
10.1109/TCI.2019.2948758
10.1145/2488608.2488693
10.1109/TIT.2018.2800663
10.1007/s10208-009-9045-5
10.1109/ICIP.2012.6467015
10.1109/TIT.2015.2399924
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2021.3112805
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 8206
ExternalDocumentID 10_1109_TIT_2021_3112805
9537806
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: CIF-1815101; CIF-2115200
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-1ddfe86c61277c42184a2ee54c31c0b7c7d5aac2dd09d0cc81ed82479c94f2fe3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720518300036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 09 07:08:00 EST 2025
Sat Nov 29 03:31:46 EST 2025
Tue Nov 18 22:32:50 EST 2025
Wed Aug 27 02:27:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1ddfe86c61277c42184a2ee54c31c0b7c7d5aac2dd09d0cc81ed82479c94f2fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3042-1186
0000-0003-2774-0650
PQID 2599218094
PQPubID 36024
PageCount 17
ParticipantIDs crossref_primary_10_1109_TIT_2021_3112805
proquest_journals_2599218094
crossref_citationtrail_10_1109_TIT_2021_3112805
ieee_primary_9537806
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References yi (ref34) 2016
ref13
ref12
nayer (ref14) 2019
srinivasa (ref23) 2019
ref37
ref15
ref36
ref31
ref30
ref11
ref1
ref17
wang (ref10) 2016
ref16
ref19
ref18
zheng (ref35) 2016
wang (ref7) 2016
nayer (ref33) 2021
chen (ref4) 2015
cherapanamjeri (ref32) 2016
ref26
ref20
chen (ref28) 2020
vershynin (ref29) 2018; 47
ref27
zhang (ref6) 2017; 18
hardt (ref24) 2014
netrapalli (ref2) 2013
ref8
ref9
ref3
krishnamurthy (ref22) 2014
ref5
anaraki (ref21) 2014
jain (ref25) 2015
References_xml – ident: ref31
  doi: 10.1109/TIT.2020.3016183
– ident: ref13
  doi: 10.1109/TSP.2017.2684758
– start-page: 2796
  year: 2013
  ident: ref2
  article-title: Phase retrieval using alternating minimization
  publication-title: Proc Neural Inf Process Syst (NeurIPS)
– start-page: 4152
  year: 2016
  ident: ref34
  article-title: Fast algorithms for robust PCA via gradient descent
  publication-title: Proc Adv Neural Inf Process Syst (NeurIPS)
– start-page: 4762
  year: 2019
  ident: ref14
  article-title: Phaseless PCA: Low-rank matrix recovery from column-wise phaseless measurements
  publication-title: Proc Int Conf Mach Learn (ICML)
– start-page: 1341
  year: 2014
  ident: ref21
  article-title: Memory and computation efficient PCA via very sparse random projections
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref9
  doi: 10.1109/TSP.2017.2656844
– ident: ref18
  doi: 10.1109/TIT.2010.2046205
– start-page: 739
  year: 2015
  ident: ref4
  article-title: Solving random quadratic systems of equations is nearly as easy as solving linear systems
  publication-title: Proc Neural Inf Process Syst (NeurIPS)
– ident: ref15
  doi: 10.1109/TIT.2020.2984478
– year: 2016
  ident: ref10
  article-title: Sparse phase retrieval via truncated amplitude flow
  publication-title: arXiv 1611 07641
– ident: ref11
  doi: 10.1214/16-AOS1443
– ident: ref27
  doi: 10.1007/s10208-011-9099-z
– year: 2016
  ident: ref35
  article-title: Convergence analysis for rectangular matrix completion using Burer-Monteiro factorization and gradient descent
  publication-title: arXiv 1605 07051
– ident: ref30
  doi: 10.1109/TIT.2019.2891653
– volume: 18
  start-page: 5164
  year: 2017
  ident: ref6
  article-title: A nonconvex approach for phase retrieval: Reshaped Wirtinger flow and incremental algorithms
  publication-title: J Mach Learn Res
– start-page: 1007
  year: 2015
  ident: ref25
  article-title: Fast exact matrix completion with finite samples
  publication-title: Proc Conf Learn Theory
– year: 2016
  ident: ref7
  article-title: Solving systems of random quadratic equations via truncated amplitude flow
  publication-title: arXiv 1605 08285
– year: 2021
  ident: ref33
  article-title: Fast and sample-efficient federated low rank matrix recovery from column-wise linear and quadratic projections
  publication-title: arXiv 2102 10217
– volume: 47
  year: 2018
  ident: ref29
  publication-title: High-Dimensional Probability An Introduction with Applications in Data Science
– ident: ref1
  doi: 10.1002/cpa.21432
– ident: ref26
  doi: 10.1214/10-AOS850
– ident: ref37
  doi: 10.1109/TCOMM.2009.04.070065
– start-page: 638
  year: 2014
  ident: ref24
  article-title: Fast matrix completion without the condition number
  publication-title: Proc Conf Learn Theory
– ident: ref12
  doi: 10.1109/TIT.2019.2902924
– year: 2020
  ident: ref28
  article-title: Spectral methods for data science: A statistical perspective
  publication-title: arXiv 2012 08496
– ident: ref8
  doi: 10.1137/120893707
– start-page: 797
  year: 2016
  ident: ref32
  article-title: Nearly optimal robust matrix completion
  publication-title: Proc ICML
– ident: ref36
  doi: 10.1017/CBO9780511794308.006
– ident: ref16
  doi: 10.1109/TCI.2019.2948758
– ident: ref19
  doi: 10.1145/2488608.2488693
– ident: ref5
  doi: 10.1109/TIT.2018.2800663
– ident: ref17
  doi: 10.1007/s10208-009-9045-5
– ident: ref20
  doi: 10.1109/ICIP.2012.6467015
– ident: ref3
  doi: 10.1109/TIT.2015.2399924
– year: 2014
  ident: ref22
  article-title: Subspace learning from extremely compressed measurements
  publication-title: arXiv 1404 0751
– start-page: 10101
  year: 2019
  ident: ref23
  article-title: Decentralized sketching of low rank matrices
  publication-title: Proc Neural Inf Process Syst (NeurIPS)
SSID ssj0014512
Score 2.4833703
Snippet This work studies the Low Rank Phase Retrieval (LRPR) problem: recover an <inline-formula> <tex-math notation="LaTeX">n \times q </tex-math></inline-formula>...
This work studies the Low Rank Phase Retrieval (LRPR) problem: recover an [Formula Omitted] rank-[Formula Omitted] matrix [Formula Omitted] from [Formula...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8190
SubjectTerms Complexity
Complexity theory
compressive sensing
Extraterrestrial measurements
Incoherence
low rank matrix recovery
Low-rank
Mathematical analysis
Matrix algebra
Noise measurement
Phase measurement
Phase retrieval
phase retrieval (PR)
Principal component analysis
Stability analysis
Title Sample-Efficient Low Rank Phase Retrieval
URI https://ieeexplore.ieee.org/document/9537806
https://www.proquest.com/docview/2599218094
Volume 67
WOSCitedRecordID wos000720518300036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP2Yw4MenG6K0yk9eBlYl2RpkxxFNhRkjDlht5ImKYrSyX7ov2-SdmWgCN56SEJ4X369fsl7AFcmdg4WwrKT2FiCoixhTbFSIVcx5twZirDUm02w0YjPZmJcg-vqLYwxxl8-Mzfu0-fy9Vyt3a-ynoj6jDt97R3G4uKtVpUxoBEulMGxncCWc2xSkkj0pg9TSwQJtvzUrsbOqG5rC_KeKj8WYr-7DBv_69chHJSnyOC2CPsR1EzehMbGoSEoJ2wT9rfkBlvQfZJOCzgceNkI22TwOP8KJjJ_C8YvdjcLJt5ey469Y3geDqZ392FplRAqIvAqxFpnhscWYMKYoo63SWJMRFUfK5QyxXQkpSJaI6GRUhwbzQllQgmakcz0T6Cez3NzCoGMjDCaSoZoRqUNcMxQhlLMUGoPAxlqQ2-DXqJKHXFnZ_GeeD6BRGLxThzeSYl3G7pVjY9CQ-OPsi2Hb1WuhLYNnU2AknKSLRPL3ARx-mP07Pda57Dn2i5un3SgvlqszQXsqs_V63Jx6cfPN5oxwHU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP0YU1APTjfF6dQevAysS7K0aY4ijg3nGHPCbqVNUhSlk_3Qf98k_cFAEbz1kKTlfUm-vCZ5D-BK-cbBgmt24itNUIQmrDEWwg2Ej4PAGIqw2JpNsNEomM34uALX5V0YpZQ9fKZuzKPdy5dzsTa_yjrc67LA6GtveZQSlN3WKvcMqIczbXCsh7BmHcWmJOKd6WCqqSDBmqHq-dhY1W0kIeuq8mMqtvmlV_vflx3Afr6OdG6zwB9CRaV1qBUeDU4-ZOuwtyE42ID2U2TUgN17Kxyhm3SG8y9nEqVvzvhF5zNnYg22dO87gufe_fSu7-ZmCa4gHK9cLGWiAl9DTBgT1DC3iCjlUdHFAsVMMOlFkSBSIi6REAFWMiCUccFpQhLVPYZqOk_VCTiRp7iSNGKIJjTSIfYZSlCMGYr1ciBBTegU6IUiVxI3hhbvoWUUiIca79DgHeZ4N6Fd1vjIVDT-KNsw-Jblcmib0CoCFObDbBlq7saJUSCjp7_XuoSd_vRxGA4Ho4cz2DXvyc6itKC6WqzVOWyLz9XrcnFh-9I3ypHDvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample-Efficient+Low+Rank+Phase+Retrieval&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Nayer%2C+Seyedehsara&rft.au=Vaswani%2C+Namrata&rft.date=2021-12-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=67&rft.issue=12&rft.spage=8190&rft.epage=8206&rft_id=info:doi/10.1109%2FTIT.2021.3112805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2021_3112805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon