Anomaly Detection, Localization and Classification Using Drifting Synchrophasor Data Streams

With ongoing automation and digitization of the electric power system, several Phasor Measurement Units (PMUs) have been deployed for monitoring and control. PMU data can have multiple anomalies, and many of the researchers in the past have concentrated on training machine/deep learning algorithms o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on smart grid Ročník 12; číslo 4; s. 3570 - 3580
Hlavní autori: Ahmed, A., Sajan, K. S., Srivastava, A., Wu, Y.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1949-3053, 1949-3061
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With ongoing automation and digitization of the electric power system, several Phasor Measurement Units (PMUs) have been deployed for monitoring and control. PMU data can have multiple anomalies, and many of the researchers in the past have concentrated on training machine/deep learning algorithms offline for anomaly detection over PMU data (i.e., not in real-time). These machine/deep learning algorithms, when trained offline on a sample rather than a population of the dataset, fail to consider the dynamic behavior of the power grid in real-time, resulting in low accuracy. Considering the dynamic behavior of the power grid (e.g., change in load, generation, distributed energy resources (DERs) switching, network, controls), the definition of data anomalies varies in time and requires online training. A fundamental challenge is to enable online (i.e., real-time) training of machine/deep learning algorithms for anomaly detection over streaming PMU data. While machine/deep learning is often desirable to manage data streams, training a deep learning algorithm over streaming PMU data is nontrivial due to changes in data statistics caused by dynamic streaming data. This article proposes PMUNET: a novel device-level deep learning-based data-driven approach for anomaly detection, localization, and classification over streaming PMU data, using online learning and multivariate data-drift detection algorithm. Two variants of PMUNET, Dynamic data Change Driven Learning (DCDL) and Continuity Driven Learning (CDL), are proposed and compared. DCDL aims to train the deep learning algorithm whenever the definition of anomaly changes due to the power grid dynamics. On the other hand, CDL continuously trains the deep learning algorithm over the PMU data-stream. The experimental results verify that DCDL outperforms CDL and other efficient anomaly detection methods over multiple events such as faults and load/ generator/capacitor/DERs variations/switching for IEEE 14 and 39 Bus test system as well as real PMU industrial data. The result verifies that DCDL variant of PMUNET improves over existing approach with a gain of 2% - 10% in terms of accuracy, false-positive rate, and false-negative rate.
AbstractList With ongoing automation and digitization of the electric power system, several Phasor Measurement Units (PMUs) have been deployed for monitoring and control. PMU data can have multiple anomalies, and many of the researchers in the past have concentrated on training machine/deep learning algorithms offline for anomaly detection over PMU data (i.e., not in real-time). These machine/deep learning algorithms, when trained offline on a sample rather than a population of the dataset, fail to consider the dynamic behavior of the power grid in real-time, resulting in low accuracy. Considering the dynamic behavior of the power grid (e.g., change in load, generation, distributed energy resources (DERs) switching, network, controls), the definition of data anomalies varies in time and requires online training. A fundamental challenge is to enable online (i.e., real-time) training of machine/deep learning algorithms for anomaly detection over streaming PMU data. While machine/deep learning is often desirable to manage data streams, training a deep learning algorithm over streaming PMU data is nontrivial due to changes in data statistics caused by dynamic streaming data. This article proposes PMUNET: a novel device-level deep learning-based data-driven approach for anomaly detection, localization, and classification over streaming PMU data, using online learning and multivariate data-drift detection algorithm. Two variants of PMUNET, Dynamic data Change Driven Learning (DCDL) and Continuity Driven Learning (CDL), are proposed and compared. DCDL aims to train the deep learning algorithm whenever the definition of anomaly changes due to the power grid dynamics. On the other hand, CDL continuously trains the deep learning algorithm over the PMU data-stream. The experimental results verify that DCDL outperforms CDL and other efficient anomaly detection methods over multiple events such as faults and load/ generator/capacitor/DERs variations/switching for IEEE 14 and 39 Bus test system as well as real PMU industrial data. The result verifies that DCDL variant of PMUNET improves over existing approach with a gain of 2% – 10% in terms of accuracy, false-positive rate, and false-negative rate.
Author Srivastava, A.
Wu, Y.
Ahmed, A.
Sajan, K. S.
Author_xml – sequence: 1
  givenname: A.
  surname: Ahmed
  fullname: Ahmed, A.
  email: anurag.k.srivastava@wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 2
  givenname: K. S.
  surname: Sajan
  fullname: Sajan, K. S.
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 3
  givenname: A.
  orcidid: 0000-0003-3518-8018
  surname: Srivastava
  fullname: Srivastava, A.
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 4
  givenname: Y.
  surname: Wu
  fullname: Wu, Y.
  organization: Computer and Data Science Department, Case Western Reserve University, Cleveland, OH, USA
BookMark eNp9kM9PwjAUxxuDiYjcTbws8erwtV03eiSgaELiAbiZNLVrpWSs2JYD_vVujnDw4Lu8n9_3TT7XqFe7WiN0i2GEMfDH1XI-IkDwiALLaMEuUB_zjKcUctw714xeoWEIW2iCUpoT3kfvk9rtZHVMZjpqFa2rH5KFU7Ky37LtElmXybSSIVhjVTdaB1t_JjNvTWyL5bFWG-_2GxmcT2YyymQZvZa7cIMujayCHp7yAK2fn1bTl3TxNn-dThapIhzHFKuCjpXK9AehpASuCs0NhbIEKE1pOIVsLIEVRpIyLwjWusjHmhdjljFGuKQDdN_93Xv3ddAhiq07-LqxFIRlhAGQjDdX0F0p70Lw2oi9tzvpjwKDaDGKBqNoMYoTxkaS_5EoG38hRC9t9Z_wrhNarfXZh1PKeLP9AR-bgTw
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_119608
crossref_primary_10_1145_3746635
crossref_primary_10_1109_ACCESS_2023_3330056
crossref_primary_10_1109_JIOT_2022_3183180
crossref_primary_10_3390_app14031194
crossref_primary_10_1109_JIOT_2023_3286185
crossref_primary_10_1186_s13677_024_00682_0
crossref_primary_10_3390_ijgi11030205
crossref_primary_10_1007_s12065_025_01079_x
crossref_primary_10_1109_TSG_2023_3270421
crossref_primary_10_1016_j_apenergy_2023_121573
crossref_primary_10_1109_TSG_2023_3325276
crossref_primary_10_1109_ACCESS_2022_3205321
crossref_primary_10_1098_rsta_2022_0253
crossref_primary_10_1109_JPROC_2022_3175070
crossref_primary_10_1016_j_energy_2023_130184
crossref_primary_10_1016_j_ijepes_2023_108988
crossref_primary_10_1109_TIA_2025_3529800
crossref_primary_10_1109_TIA_2024_3471997
crossref_primary_10_1016_j_epsr_2024_110538
crossref_primary_10_1109_TSMC_2024_3407061
crossref_primary_10_3390_math10213949
crossref_primary_10_1016_j_is_2025_102524
crossref_primary_10_1109_TSG_2022_3177154
crossref_primary_10_1080_12460125_2022_2071404
crossref_primary_10_1007_s00202_023_01963_8
crossref_primary_10_3390_en16176203
crossref_primary_10_1109_JIOT_2024_3476268
crossref_primary_10_1109_TPWRD_2021_3102148
crossref_primary_10_1109_TPWRD_2023_3268767
crossref_primary_10_1007_s10207_023_00720_z
crossref_primary_10_1016_j_ress_2025_111309
crossref_primary_10_1109_TPWRS_2022_3209343
crossref_primary_10_1016_j_epsr_2023_109553
crossref_primary_10_1016_j_ipm_2023_103306
Cites_doi 10.1109/EEEIC.2016.7555623
10.1109/TSG.2018.2816027
10.1109/TII.2017.2772081
10.1109/TII.2018.2855428
10.1109/TII.2020.2976752
10.1007/s11227-018-2674-1
10.1109/TPWRS.2020.2986019
10.1109/TSG.2014.2302016
10.3390/make1030054
10.1016/j.ijepes.2020.106255
10.1109/TII.2018.2850930
10.1111/coin.12146
10.1145/3146347.3146356
10.1109/TSG.2011.2106521
10.1080/10618600.2019.1617160
10.3390/s20051261
10.1145/3152494.3152501
10.1109/TSG.2016.2559444
10.1109/AERO.2005.1559688
10.1016/j.neucom.2017.04.070
10.1109/TPWRD.2014.2334471
10.1109/PESGM.2018.8586320
10.1145/2934664
10.1109/TIA.2019.2928500
10.1007/978-3-319-17701-4_23
10.1109/TPWRD.2016.2520958
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2021.3054375
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 3580
ExternalDocumentID 10_1109_TSG_2021_3054375
9335975
Genre orig-research
GrantInformation_xml – fundername: U.S. NSF FW-HTF
  grantid: 1840192
  funderid: 10.13039/100000001
– fundername: Siemens Corporate Research (SCR)
  funderid: 10.13039/501100004830
– fundername: PNNL Data-Model Convergence initiative
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-1c738cc4eb232d09c7e9f30dd00dfdf93048a057fa2d6721ee768e978545529a3
IEDL.DBID RIE
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663539700069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Mon Jun 30 09:37:38 EDT 2025
Tue Nov 18 22:18:35 EST 2025
Sat Nov 29 03:45:58 EST 2025
Wed Aug 27 02:50:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1c738cc4eb232d09c7e9f30dd00dfdf93048a057fa2d6721ee768e978545529a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3518-8018
PQID 2542500249
PQPubID 2040408
PageCount 11
ParticipantIDs proquest_journals_2542500249
crossref_primary_10_1109_TSG_2021_3054375
crossref_citationtrail_10_1109_TSG_2021_3054375
ieee_primary_9335975
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ester (ref10) 1996; 96
ref14
ref31
ref30
ref11
ref32
ref2
ref1
bertsekas (ref24) 1989; 23
ref16
ref19
ref18
emmert-streib (ref28) 2019; 1
ikeda (ref17) 2018
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref9
ref4
pedregosa (ref27) 2011; 12
ref3
ref6
zinkevich (ref29) 2010
ref5
zhou (ref7) 2009; 5
References_xml – volume: 12
  start-page: 2825
  year: 2011
  ident: ref27
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: ref25
  doi: 10.1109/EEEIC.2016.7555623
– ident: ref2
  doi: 10.1109/TSG.2018.2816027
– start-page: 2595
  year: 2010
  ident: ref29
  article-title: Parallelized stochastic gradient descent
  publication-title: Advances in neural information processing systems
– ident: ref5
  doi: 10.1109/TII.2017.2772081
– ident: ref23
  doi: 10.1109/TII.2018.2855428
– ident: ref12
  doi: 10.1109/TII.2020.2976752
– ident: ref13
  doi: 10.1007/s11227-018-2674-1
– ident: ref6
  doi: 10.1109/TPWRS.2020.2986019
– ident: ref1
  doi: 10.1109/TSG.2014.2302016
– volume: 1
  start-page: 945
  year: 2019
  ident: ref28
  article-title: Understanding statistical hypothesis testing: The logic of statistical inference
  publication-title: Machine Learning and Knowledge Extraction
  doi: 10.3390/make1030054
– ident: ref32
  doi: 10.1016/j.ijepes.2020.106255
– ident: ref18
  doi: 10.1109/TII.2018.2850930
– ident: ref15
  doi: 10.1111/coin.12146
– ident: ref30
  doi: 10.1145/3146347.3146356
– ident: ref19
  doi: 10.1109/TSG.2011.2106521
– volume: 96
  start-page: 226
  year: 1996
  ident: ref10
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc 2nd Int Conf Knowl Discov Data Min (KDD)
– volume: 5
  start-page: 1697
  year: 2009
  ident: ref7
  article-title: Anomaly detection over concept drifting data streams
  publication-title: J Comput Inf Syst
– ident: ref14
  doi: 10.1080/10618600.2019.1617160
– volume: 23
  year: 1989
  ident: ref24
  publication-title: Parallel and Distributed Computation Numerical Methods
– year: 2018
  ident: ref17
  article-title: Human-assisted online anomaly detection with normal outlier retraining
  publication-title: Proc ACM SIGKDD Workshop
– ident: ref8
  doi: 10.3390/s20051261
– ident: ref9
  doi: 10.1145/3152494.3152501
– ident: ref22
  doi: 10.1109/TSG.2016.2559444
– ident: ref11
  doi: 10.1109/AERO.2005.1559688
– ident: ref16
  doi: 10.1016/j.neucom.2017.04.070
– ident: ref21
  doi: 10.1109/TPWRD.2014.2334471
– ident: ref3
  doi: 10.1109/PESGM.2018.8586320
– ident: ref26
  doi: 10.1145/2934664
– ident: ref4
  doi: 10.1109/TIA.2019.2928500
– ident: ref31
  doi: 10.1007/978-3-319-17701-4_23
– ident: ref20
  doi: 10.1109/TPWRD.2016.2520958
SSID ssj0000333629
Score 2.538643
Snippet With ongoing automation and digitization of the electric power system, several Phasor Measurement Units (PMUs) have been deployed for monitoring and control....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3570
SubjectTerms Algorithms
Anomalies
anomaly and event classification
Anomaly detection
Classification
Data transmission
Deep learning
Distance learning
Distributed generation
Electric power grids
Electric power systems
Electrical loads
Electricity distribution
Energy sources
Fault detection
Heuristic algorithms
Localization
Machine learning
Measuring instruments
Multivariate analysis
Online instruction
Phasor measurement units
Phasors
Power system dynamics
Real time
Real-time systems
Stress concentration
Switching
Training
Title Anomaly Detection, Localization and Classification Using Drifting Synchrophasor Data Streams
URI https://ieeexplore.ieee.org/document/9335975
https://www.proquest.com/docview/2542500249
Volume 12
WOSCitedRecordID wos000663539700069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrZKDF6HbppvuI0exVg9ShFboQVjSPLDQbqXdCv33TrLbUlAEb0tIwpJJMvNlvpkBuA2lr5kygSfC2L5WdbjH6RgvwzCSQqMKV8a4YhNRvx-PRvy1BI1tLIzW2pHPdNN-Ol--msuVfSprIfhG-zcoQzmKwjxWa_ueQhnDu5g7J3LHuvMDtvFKUt4aDp4QC_rtJrZ3mCUV7mghV1blx13sFEzv6H-_dgyHhSFJ7nPJn0BJp6dwsJNesArviO1nYromXZ05xlXaIC9WdxWxl0SkiriqmJYvlDc5CgHpLibG8qHJYJ1KW0jhQyznC9IVmSDWjy1myzN46z0OH569opqCJ33ezry2jFgsZQehNEqAchlpbhhVilJllOEMz7JA680IX4WIC7VGJKIRZKKNFfhcsHOopPNUXwBhDPW6pFxISXE-E7NQj2OjmBmPhQxMDVqb1U1kkWrcVryYJg5yUJ6gPBIrj6SQRw3utiM-8zQbf_St2vXf9iuWvgb1jQCT4hwuE4S_aOPZtIiXv4-6gn07d07ArUMlW6z0NezJr2yyXNy4LfYNRCjPKg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv6Y4P_Pgi2Bd1rRd8yjOqTiH4AQfhJLlAwfaydoJ---9pN0QFMG3EpK25JLc_e5-uQM4iaSvmTKhJ6LYeqsC7nE6wMMwakmhUYUrY1yxiVavFz8_84cKnM3vwmitHflMn9tHF8tXIzmxrrIGgm-0f8MFWAyDwKfFba25R4Uyhqcxd2HkwAb0QzaLS1Le6D9eIxr0m-fYHjBLK_ymh1xhlR-nsVMxnfX__dwGrJWmJLkoZL8JFZ1uweq3BIM1eEF0_y7epqStc8e5Ss9I12qv8vYlEakiri6mZQwVTY5EQNrjobGMaPI4TaUtpfAqstGYtEUuiI1ki_dsG546V_3LG6-sp-BJnzdzrylbLJYyQDCNMqBctjQ3jCpFqTLKcIa7WaD9ZoSvIkSGWiMW0Qgz0coKfS7YDlTTUap3gTCGml1SLqSk-D4Ts0gPYqOYGQyEDE0dGrPZTWSZbNzWvHhLHOigPEF5JFYeSSmPOpzOR3wUiTb-6Fuz8z_vV059HQ5mAkzKnZglCIDRyrOJEfd-H3UMyzf9-27Sve3d7cOK_U5Bxz2Aaj6e6ENYkp_5MBsfueX2BTM-0nE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection%2C+Localization+and+Classification+Using+Drifting+Synchrophasor+Data+Streams&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Ahmed%2C+A.&rft.au=Sajan%2C+K.+S.&rft.au=Srivastava%2C+A.&rft.au=Wu%2C+Y.&rft.date=2021-07-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=12&rft.issue=4&rft.spage=3570&rft.epage=3580&rft_id=info:doi/10.1109%2FTSG.2021.3054375&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2021_3054375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon