Analyzing Convergence and Rates of Convergence of Particle Swarm Optimization Algorithms Using Stochastic Approximation Methods

Recently, much progress has been made on particle swarm optimization (PSO). A number of works have been devoted to analyzing the convergence of the underlying algorithms. Nevertheless, in most cases, rather simplified hypotheses are used. For example, it often assumes that the swarm has only one par...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 60; číslo 7; s. 1760 - 1773
Hlavní autoři: Quan Yuan, Yin, George
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, much progress has been made on particle swarm optimization (PSO). A number of works have been devoted to analyzing the convergence of the underlying algorithms. Nevertheless, in most cases, rather simplified hypotheses are used. For example, it often assumes that the swarm has only one particle. In addition, more often than not, the variables and the points of attraction are assumed to remain constant throughout the optimization process. In reality, such assumptions are often violated. Moreover, there are no rigorous rates of convergence results available to date for the particle swarm, to the best of our knowledge. In this paper, we consider a general form of PSO algorithms, and analyze asymptotic properties of the algorithms using stochastic approximation methods. We introduce four coefficients and rewrite the PSO procedure as a stochastic approximation type iterative algorithm. Then we analyze its convergence using weak convergence method. It is proved that a suitably scaled sequence of swarms converge to the solution of an ordinary differential equation. We also establish certain stability results. Moreover, convergence rates are ascertained by using weak convergence method. A centered and scaled sequence of the estimation errors is shown to have a diffusion limit.
AbstractList Recently, much progress has been made on particle swarm optimization (PSO). A number of works have been devoted to analyzing the convergence of the underlying algorithms. Nevertheless, in most cases, rather simplified hypotheses are used. For example, it often assumes that the swarm has only one particle. In addition, more often than not, the variables and the points of attraction are assumed to remain constant throughout the optimization process. In reality, such assumptions are often violated. Moreover, there are no rigorous rates of convergence results available to date for the particle swarm, to the best of our knowledge. In this paper, we consider a general form of PSO algorithms, and analyze asymptotic properties of the algorithms using stochastic approximation methods. We introduce four coefficients and rewrite the PSO procedure as a stochastic approximation type iterative algorithm. Then we analyze its convergence using weak convergence method. It is proved that a suitably scaled sequence of swarms converge to the solution of an ordinary differential equation. We also establish certain stability results. Moreover, convergence rates are ascertained by using weak convergence method. A centered and scaled sequence of the estimation errors is shown to have a diffusion limit.
Author Yin, George
Quan Yuan
Author_xml – sequence: 1
  surname: Quan Yuan
  fullname: Quan Yuan
  email: quanyuan@wayne.edu
  organization: Dept. of Math., Wayne State Univ., Detroit, MI, USA
– sequence: 2
  givenname: George
  surname: Yin
  fullname: Yin, George
  email: gyin@math.wayne.edu
  organization: Dept. of Math., Wayne State Univ., Detroit, MI, USA
BookMark eNp9kE1rGzEQhkVxoXaae6AXQc_r6mOlSMfFJG0gJSUf50WrHdky65UjyUmTS_965DoU0kNOwzDPM8y8MzQZwwgInVAyp5Tob7fNYs4IreeMK1qL-gOaUiFUxQTjEzQlhKpKMyU_oVlK69LKuqZT9KcZzfD07MclXoTxAeISRgvYjD2-NhkSDu7NoLS_TMzeDoBvHk3c4Ktt9hv_bLIPI26GZYg-rzYJ36X90psc7MqkIuBmu43ht98cyJ-QV6FPn9FHZ4YEx6_1CN2dn90uflSXV98vFs1lZZmmuaKdrDsmjOqcBas6RRWFHnrnoDekU6QXmjvmdE2c4gUzp9xxLq2zVht-yo_Q18PecsP9DlJu12EXy--ppVJTxrTQslDyQNkYUorgWuvz33tzNH5oKWn3Ybcl7HYfdvsadhHJf-I2lk_j03vKl4PiAeAfLrUSQlL-AqGTj44
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TIE_2022_3225829
crossref_primary_10_1007_s40687_020_00241_4
crossref_primary_10_1108_EC_02_2017_0044
crossref_primary_10_1016_j_swevo_2019_04_011
crossref_primary_10_1109_TTE_2016_2574947
crossref_primary_10_1007_s11831_021_09694_4
crossref_primary_10_1109_TII_2020_3029258
crossref_primary_10_1109_TIE_2022_3189103
crossref_primary_10_1038_s41598_023_29618_5
crossref_primary_10_1007_s10489_018_1258_3
crossref_primary_10_1109_TCNS_2023_3330197
crossref_primary_10_1016_j_ins_2016_04_024
crossref_primary_10_1214_20_STS784
crossref_primary_10_1007_s11042_018_6459_6
crossref_primary_10_1109_TNNLS_2022_3225184
crossref_primary_10_1137_20M1321152
crossref_primary_10_1364_AO_57_002747
crossref_primary_10_1007_s11770_021_0964_5
crossref_primary_10_1016_j_cam_2017_10_026
crossref_primary_10_1016_j_chaos_2021_111658
crossref_primary_10_1016_j_ejor_2020_03_035
crossref_primary_10_1049_gtd2_12720
crossref_primary_10_1088_1755_1315_660_1_012141
crossref_primary_10_1016_j_physa_2025_130778
crossref_primary_10_1016_j_swevo_2020_100819
crossref_primary_10_1109_TSMC_2017_2749337
crossref_primary_10_1007_s11831_025_10307_7
crossref_primary_10_1016_j_fuel_2025_136847
crossref_primary_10_3389_fams_2024_1304268
crossref_primary_10_1186_s40623_020_01297_w
crossref_primary_10_1007_s11770_023_1024_0
crossref_primary_10_1016_j_cam_2018_04_036
crossref_primary_10_1109_TIE_2017_2751008
crossref_primary_10_1007_s00245_023_09983_3
crossref_primary_10_1109_JIOT_2024_3491180
crossref_primary_10_1109_TCOMM_2018_2883290
crossref_primary_10_1002_ett_3539
crossref_primary_10_1016_j_asoc_2025_112702
crossref_primary_10_1109_JIOT_2025_3526688
crossref_primary_10_1109_TEVC_2016_2526656
Cites_doi 10.1007/978-3-642-75894-2
10.1002/cpe.812
10.1109/ICEC.1998.699146
10.1109/20.996256
10.1016/S0303-2647(03)00131-X
10.1109/TEVC.2004.826071
10.1137/S1052623495270723
10.1145/1068009.1068036
10.1016/j.ejps.2004.03.002
10.1109/TSMCB.2007.897922
10.1016/j.ipl.2006.10.005
10.1109/TEVC.2010.2053935
10.1109/TSMCB.2003.818557
10.1109/IIT.2009.5413787
10.5019/j.ijcir.2008.130
10.1007/978-3-540-74282-1_45
10.1007/s00158-004-0425-9
10.1016/j.camwa.2009.01.025
10.1007/978-3-540-24854-5_41
10.1109/TEVC.2006.880326
10.1137/S1052623497319225
10.1007/978-1-4419-1105-6
10.1109/WICT.2011.6141257
10.1109/PESS.2001.970272
10.1109/TEVC.2004.826070
10.1007/11539902_76
10.1631/jzus.2005.A0528
10.1109/NABIC.2009.5393622
10.1109/ICNN.1995.488968
10.1016/S0098-1354(03)00114-5
10.1016/j.asoc.2009.08.029
10.1109/SIS.2007.368035
10.1023/A:1016568309421
10.1007/978-3-540-28646-2_38
10.1109/TSMCB.2006.883272
10.1109/ICSMC.2003.1244633
10.1155/2008/761459
10.1109/4235.985692
10.1016/j.optcom.2003.12.045
10.1016/S0020-0190(02)00447-7
10.1016/j.cam.2004.06.005
10.1109/TAC.2003.821416
10.1023/B:JINT.0000038946.21921.c7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2014.2381454
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 1773
ExternalDocumentID 3726559411
10_1109_TAC_2014_2381454
6985561
Genre orig-research
GrantInformation_xml – fundername: Army Research Office
  grantid: W911NF-12-1-0223
  funderid: 10.13039/100000183
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-1b64b25a8bfcec8b8181ededffeda0b80d593f2f940f83a8ba73f336cfcc9a373
IEDL.DBID RIE
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356871400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Jun 30 10:18:07 EDT 2025
Sat Nov 29 05:40:06 EST 2025
Tue Nov 18 22:03:04 EST 2025
Wed Aug 27 02:52:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords rate of convergence
stochastic approximation
weak convergence
Particle swarm optimization (PSO)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1b64b25a8bfcec8b8181ededffeda0b80d593f2f940f83a8ba73f336cfcc9a373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1691229596
PQPubID 85475
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TAC_2014_2381454
proquest_journals_1691229596
crossref_primary_10_1109_TAC_2014_2381454
ieee_primary_6985561
PublicationCentury 2000
PublicationDate 2015-July
2015-7-00
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-July
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
kovács (ref18) 2004; 28
ref55
ref54
ref10
kushner (ref19) 1984
mendes (ref28) 2004
ref17
ref16
kushner (ref20) 2003
ref51
ref50
ref46
ref45
ref48
ref47
ref42
reynolds (ref41) 0
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
zambrano-bigiarini (ref53) 0
billingsley (ref5) 1968
ref40
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
ref38
zhang (ref56) 0
ref24
emara (ref11) 0; 3
ref23
ref26
yin (ref52) 2010
nenoraite (ref31) 0
ref22
ref21
beielstein (ref3) 2002
ref27
ref29
pedersen (ref35) 2010
kaniovskii (ref15) 1988; 6
liu (ref25) 0; 4
References_xml – ident: ref4
  doi: 10.1007/978-3-642-75894-2
– ident: ref48
  doi: 10.1002/cpe.812
– ident: ref43
  doi: 10.1109/ICEC.1998.699146
– ident: ref6
  doi: 10.1109/20.996256
– ident: ref39
  doi: 10.1016/S0303-2647(03)00131-X
– ident: ref40
  doi: 10.1109/TEVC.2004.826071
– ident: ref21
  doi: 10.1137/S1052623495270723
– ident: ref38
  doi: 10.1145/1068009.1068036
– ident: ref42
  doi: 10.1016/j.ejps.2004.03.002
– ident: ref8
  doi: 10.1109/TSMCB.2007.897922
– start-page: 843
  year: 0
  ident: ref31
  article-title: Stocks' trading system based on the particle swarm optimization algorithm
  publication-title: Proc ICCS
– ident: ref12
  doi: 10.1016/j.ipl.2006.10.005
– ident: ref27
  doi: 10.1109/TEVC.2010.2053935
– year: 1968
  ident: ref5
  publication-title: Convergence of Probability Measures
– ident: ref13
  doi: 10.1109/TSMCB.2003.818557
– ident: ref17
  doi: 10.1109/IIT.2009.5413787
– year: 2003
  ident: ref20
  publication-title: Stochastic Approximation and Recursive Algorithms and Applications
– ident: ref30
  doi: 10.5019/j.ijcir.2008.130
– ident: ref49
  doi: 10.1007/978-3-540-74282-1_45
– volume: 28
  start-page: 170
  year: 2004
  ident: ref18
  article-title: Analysis and optimum design of fibrereinforced composite structures
  publication-title: Struct Multidisciplinary Optim
  doi: 10.1007/s00158-004-0425-9
– ident: ref45
  doi: 10.1016/j.camwa.2009.01.025
– ident: ref32
  doi: 10.1007/978-3-540-24854-5_41
– ident: ref2
  doi: 10.1109/TEVC.2006.880326
– ident: ref51
  doi: 10.1137/S1052623497319225
– year: 2010
  ident: ref52
  publication-title: Hybrid Switching Diffusions Properties and Applications
  doi: 10.1007/978-1-4419-1105-6
– ident: ref14
  doi: 10.1109/WICT.2011.6141257
– ident: ref1
  doi: 10.1109/PESS.2001.970272
– ident: ref29
  doi: 10.1109/TEVC.2004.826070
– ident: ref22
  doi: 10.1007/11539902_76
– ident: ref54
  doi: 10.1631/jzus.2005.A0528
– volume: 6
  start-page: 1308
  year: 1988
  ident: ref15
  article-title: Limit distribution of processes of stochastic approximation type when the regression function has several roots
  publication-title: Dokl Akad Nauk SSSR
– start-page: 71
  year: 0
  ident: ref41
  article-title: Knowledge-based self-adaption in evolutionary programming using cultural algorithms
  publication-title: Proc IEEE Int Conf Evol Comput
– year: 2004
  ident: ref28
  publication-title: Population Topologies and Their Influence in Particle Swarm Performance
– ident: ref23
  doi: 10.1109/NABIC.2009.5393622
– ident: ref16
  doi: 10.1109/ICNN.1995.488968
– ident: ref10
  doi: 10.1016/S0098-1354(03)00114-5
– start-page: 2337
  year: 0
  ident: ref53
  article-title: Standard particle swarm optimization 2011 at CEC-2013: A baseline for future PSO improvements
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref36
  doi: 10.1016/j.asoc.2009.08.029
– ident: ref7
  doi: 10.1109/SIS.2007.368035
– ident: ref34
  doi: 10.1023/A:1016568309421
– volume: 4
  start-page: 3751
  year: 0
  ident: ref25
  article-title: Hybrid particle swarm optimizer with line search
  publication-title: Proc IEEE Int Conf Syst Man Cybern
– start-page: 3816
  year: 0
  ident: ref56
  article-title: DEPSO: Hybrid particle swarm with differential evolution operator
  publication-title: Proc IEEE Int Conf Syst Man Cybern
– year: 2002
  ident: ref3
  publication-title: Tuning PSO Parameters Through Sensitivity Analysis
– ident: ref44
  doi: 10.1007/978-3-540-28646-2_38
– ident: ref26
  doi: 10.1109/TSMCB.2006.883272
– ident: ref50
  doi: 10.1109/ICSMC.2003.1244633
– volume: 3
  start-page: 2811
  year: 0
  ident: ref11
  article-title: Continuous swarm optimization technique with stability analysis
  publication-title: Proc Amer Control Conf
– ident: ref37
  doi: 10.1155/2008/761459
– ident: ref9
  doi: 10.1109/4235.985692
– ident: ref55
  doi: 10.1016/j.optcom.2003.12.045
– ident: ref46
  doi: 10.1016/S0020-0190(02)00447-7
– ident: ref33
  doi: 10.1016/j.cam.2004.06.005
– year: 2010
  ident: ref35
  publication-title: Good Parameters for Particle Swarm Optimization
– ident: ref24
  doi: 10.1109/TAC.2003.821416
– year: 1984
  ident: ref19
  publication-title: Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory
– ident: ref47
  doi: 10.1023/B:JINT.0000038946.21921.c7
SSID ssj0016441
Score 2.4125185
Snippet Recently, much progress has been made on particle swarm optimization (PSO). A number of works have been devoted to analyzing the convergence of the underlying...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1760
SubjectTerms Algorithm design and analysis
Algorithms
Approximation algorithms
Approximation methods
Convergence
Optimization
Particle swarm optimization
Queuing theory
rate of convergence
stochastic approximation
Stochastic processes
weak convergence
Title Analyzing Convergence and Rates of Convergence of Particle Swarm Optimization Algorithms Using Stochastic Approximation Methods
URI https://ieeexplore.ieee.org/document/6985561
https://www.proquest.com/docview/1691229596
Volume 60
WOSCitedRecordID wos000356871400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGLYN1uk7bJcVkUD77whbeSpIkuuFvZrQ-8-NfNpLUoiuAtoZNS-DIzSWfmG4AdGtvExlwGOVPWXVAS7XSO00AzTa1lhhlflXZznJ6e8ttbcT4Be00tjDHGJ5-ZfRz6WH5e6Cf8VdZOBMdujpMwmaZpVavVRAzQr1dW1ylwxJuQZCjaV90e5nCxfXRPLGbfXJDvqfLDEHvvcjj_v-9agLn6FEm6FeyLMGGGSzD7hVtwGd493cibG5MeZpb7IktD5DAnF3i-JIX99sBNz-ttRC5f5GhAzpw1GdRlmqT7cFeM-uX9YEx8lgG5LAt9L5HlmXSRl_y1XxVBkhPfk3q8AteHB1e9o6DuthDoSHTKoKMSpqJYcmW10Vw5T94xucmtNbkMFQ_zWFAbWcFCy6kTkym1lCbaai0kTekqTA2LoVkDgiRp1KGsJJdMy0TpqMNyPKlRnSgRt6D9CUCmaypy7IjxkPkrSSgyB1mGkGU1ZC3YbVY8VjQcf8guI0SNXI1OCzY_Mc5qPR1nSBWEDc1Fsv77qg2Yce-OqwTdTZgqR09mC6b1c9kfj7b9FvwAXrXcig
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED7xYxLsAdgA0QGbH3iZRGgSO6n9WFVDIEpB0CHeItuxoRJtUBu2aS_86_icEA0xIfFmK2cl0ue7s3N33wHs0cSmNuEyyJmy7oKSaqdznAaaaWotM8z4qrSrfmcw4NfX4nwO9ptaGGOMTz4zBzj0sfy80A_4q6ydCo7dHOdhMWEsjqpqrSZmgJ69srtOhWPeBCVD0R52e5jFxQ7QQbGEvXBCvqvKK1Ps_cvh6vu-bA1W6nMk6VbAf4I5M_kMH_9hF1yHR0848teNSQ9zy32ZpSFykpMLPGGSwr544Kbn9UYil7_ldEzOnD0Z14WapHt3U0xH5e14RnyeAbksC30rkeeZdJGZ_M-oKoMkp74r9WwDfh7-GPaOgrrfQqBjEZVBpFKm4kRyZbXRXDlfHpnc5NaaXIaKh3kiqI2tYKHl1InJDrWUptpqLSTt0E1YmBQTswUEadKow1lJLpmWqdJxxHI8q1GdKpG0oP0MQKZrMnLsiXGX-UtJKDIHWYaQZTVkLfjerLiviDjekF1HiBq5Gp0W7DxjnNWaOsuQLAhbmov0y_9XfYOlo-FpP-sfD062Ydm9J6nSdXdgoZw-mF34oH-Vo9n0q9-OT_ol39E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+Convergence+and+Rates+of+Convergence+of+Particle+Swarm+Optimization+Algorithms+Using+Stochastic+Approximation+Methods&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Yuan%2C+Quan&rft.au=Yin%2C+George&rft.date=2015-07-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=60&rft.issue=7&rft.spage=1760&rft.epage=1773&rft_id=info:doi/10.1109%2FTAC.2014.2381454&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2014_2381454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon