Combining Probability Density Forecasts for Power Electrical Loads

Researchers have proposed various probabilistic load forecasting models in the form of quantiles, densities, or intervals to describe the uncertainties of future energy demand. Density forecasts can provide more uncertainty information than can be expressed by just the quantile and interval. However...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on smart grid Ročník 11; číslo 2; s. 1679 - 1690
Hlavní autoři: Li, Tianyi, Wang, Yi, Zhang, Ning
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1949-3053, 1949-3061
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Researchers have proposed various probabilistic load forecasting models in the form of quantiles, densities, or intervals to describe the uncertainties of future energy demand. Density forecasts can provide more uncertainty information than can be expressed by just the quantile and interval. However, the combining method for density forecasts is seldom investigated. This paper proposes a novel and easily implemented approach to combine density probabilistic load forecasts to further improve the performance of the final probabilistic forecasts. The combination problem is formulated as an optimization problem to minimize the continuous ranked probability score of the combined model by searching the weights of different individual methods. Under the Gaussian mixture distribution assumption of the density forecasts, the problem is cast to a linearly constrained quadratic programming problem and can be solved efficiently. Case studies on the electric load datasets of eight areas verify the effectiveness of the proposed method.
AbstractList Researchers have proposed various probabilistic load forecasting models in the form of quantiles, densities, or intervals to describe the uncertainties of future energy demand. Density forecasts can provide more uncertainty information than can be expressed by just the quantile and interval. However, the combining method for density forecasts is seldom investigated. This paper proposes a novel and easily implemented approach to combine density probabilistic load forecasts to further improve the performance of the final probabilistic forecasts. The combination problem is formulated as an optimization problem to minimize the continuous ranked probability score of the combined model by searching the weights of different individual methods. Under the Gaussian mixture distribution assumption of the density forecasts, the problem is cast to a linearly constrained quadratic programming problem and can be solved efficiently. Case studies on the electric load datasets of eight areas verify the effectiveness of the proposed method.
Author Wang, Yi
Li, Tianyi
Zhang, Ning
Author_xml – sequence: 1
  givenname: Tianyi
  orcidid: 0000-0001-9572-4164
  surname: Li
  fullname: Li, Tianyi
  organization: Department of Electrical Engineering, State Key Laboratories of Power Systems, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Yi
  orcidid: 0000-0003-1143-0666
  surname: Wang
  fullname: Wang, Yi
  organization: Department of Electrical Engineering, State Key Laboratories of Power Systems, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Ning
  orcidid: 0000-0003-0366-4657
  surname: Zhang
  fullname: Zhang, Ning
  email: ningzhang@tsinghua.edu.cn
  organization: Department of Electrical Engineering, State Key Laboratories of Power Systems, Tsinghua University, Beijing, China
BookMark eNp9kE1rAjEQhkOxUGu9F3pZ6HltJtmP5NhatQWhQu05ZGNSImtik0jx37uieOihc3nn8D4z8NyinvNOI3QPeASA-dPyczYiGPiI8IJgUlyhPvCC5xRX0LvsJb1BwxjXuBtKaUV4H72M_aaxzrrvbBF8Ixvb2rTPXrWLx5z6oJWMKWbGh2zhf3XIJq1WKVgl22zu5SreoWsj26iH5xygr-lkOX7L5x-z9_HzPFeEQ8pBGlVwUrFaQ0lMSZsSAAiuGVthA1ipppaKNwxjUpkaG1rIlSSacVkqDYQO0OPp7jb4n52OSaz9LrjupSC05LzDaNW18Kmlgo8xaCO2wW5k2AvA4ihLdLLEUZY4y-qQ6g-ibJLJepeCtO1_4MMJtFrryx_GCsppTQ-lhHdF
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_119507
crossref_primary_10_1016_j_knosys_2024_111729
crossref_primary_10_3390_s22197173
crossref_primary_10_3390_app12199603
crossref_primary_10_1007_s10479_022_04599_2
crossref_primary_10_1016_j_egyr_2024_08_002
crossref_primary_10_1109_TSG_2021_3132039
crossref_primary_10_1049_gtd2_13273
crossref_primary_10_1109_TSG_2021_3107159
crossref_primary_10_1109_TSG_2022_3158387
crossref_primary_10_1109_TII_2023_3341242
crossref_primary_10_3390_en13236191
crossref_primary_10_1109_TSG_2023_3296647
crossref_primary_10_3390_en15218308
crossref_primary_10_1051_e3sconf_202452201017
crossref_primary_10_1109_TII_2022_3228383
crossref_primary_10_1063_5_0256079
crossref_primary_10_1016_j_apenergy_2024_123751
crossref_primary_10_1109_TSTE_2021_3086851
crossref_primary_10_3390_en17246211
crossref_primary_10_1007_s42835_022_01127_x
crossref_primary_10_1109_JIOT_2021_3063677
crossref_primary_10_3390_app13116520
crossref_primary_10_1016_j_epsr_2023_109804
crossref_primary_10_1109_TPWRS_2024_3502114
crossref_primary_10_1049_rpg2_12918
crossref_primary_10_1109_TIE_2021_3102431
crossref_primary_10_1016_j_egyr_2022_03_117
crossref_primary_10_1109_JSYST_2021_3073493
crossref_primary_10_1109_TNSE_2023_3270632
crossref_primary_10_1016_j_rser_2021_110735
crossref_primary_10_1016_j_apenergy_2025_126518
crossref_primary_10_1007_s12667_024_00704_5
crossref_primary_10_1109_TSG_2020_2972513
crossref_primary_10_1016_j_apenergy_2021_118341
crossref_primary_10_1016_j_ijepes_2022_108243
crossref_primary_10_1049_rpg2_70019
crossref_primary_10_1109_TSG_2020_2995777
crossref_primary_10_1016_j_ijepes_2023_109253
crossref_primary_10_1109_TII_2023_3331076
crossref_primary_10_1016_j_energy_2021_122317
crossref_primary_10_1016_j_energy_2021_122955
crossref_primary_10_1109_TIA_2025_3529796
crossref_primary_10_1109_TSG_2022_3226423
Cites_doi 10.1016/j.ijforecast.2016.02.001
10.1109/TSG.2018.2807985
10.1016/j.ijforecast.2015.11.004
10.1016/j.energy.2016.08.023
10.2307/2527342
10.1109/TSG.2018.2817284
10.1016/j.rser.2017.05.234
10.1109/TSG.2018.2833869
10.1016/j.apenergy.2017.11.035
10.1109/TSG.2013.2280649
10.1016/j.omega.2014.08.008
10.1145/2939672.2939785
10.1109/TSG.2017.2763827
10.1198/jbes.2010.08110
10.1109/TPWRS.2018.2830785
10.1023/A:1021765131316
10.1109/TSG.2013.2274465
10.1109/TPWRS.2015.2438322
10.1016/j.ijforecast.2015.11.005
10.1016/S0047-259X(03)00079-4
10.1109/TIE.2018.2803732
10.1109/TSTE.2018.2831238
10.1109/TSG.2016.2527820
10.1146/annurev-statistics-062713-085831
10.1016/j.ijforecast.2019.02.006
10.1109/TIE.2017.2714127
10.1016/j.apenergy.2018.02.165
10.1016/j.ijforecast.2015.11.011
10.1109/TSG.2018.2818167
10.1109/TSTE.2015.2441747
10.1109/TPWRS.2009.2030271
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2019.2942024
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 1690
ExternalDocumentID 10_1109_TSG_2019_2942024
8843937
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2016YFB0900100
  funderid: 10.13039/501100012166
– fundername: Technical Project of the State Grid: Research and Application of Internet-Based Operation Platform for Ubiquitous Internet of Things in Electricity
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-1afc492687e152f53b511120788d0f10ccb7ac9b80026f70f34ada2e89a5ce123
IEDL.DBID RIE
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519592100065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Mon Jun 30 09:40:49 EDT 2025
Sat Nov 29 03:45:56 EST 2025
Tue Nov 18 22:20:44 EST 2025
Wed Aug 27 06:30:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1afc492687e152f53b511120788d0f10ccb7ac9b80026f70f34ada2e89a5ce123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9572-4164
0000-0003-1143-0666
0000-0003-0366-4657
PQID 2359902636
PQPubID 2040408
PageCount 12
ParticipantIDs ieee_primary_8843937
crossref_primary_10_1109_TSG_2019_2942024
proquest_journals_2359902636
crossref_citationtrail_10_1109_TSG_2019_2942024
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref15
ref36
ref14
ref30
ref11
ref10
ref2
ref1
chollet (ref35) 2015
ref17
ioffe (ref33) 2015; 1
ref16
ref19
ref18
li (ref38) 2019
limaye (ref31) 1984
ref24
ref23
ref26
ref25
ref20
ref22
fikri (ref29) 1975
ref21
ref28
ref27
ref8
ref7
ref9
ref4
matthews (ref34) 2017; 18
ref3
ref6
ref5
williams (ref32) 2006; 2
References_xml – ident: ref3
  doi: 10.1016/j.ijforecast.2016.02.001
– ident: ref19
  doi: 10.1109/TSG.2018.2807985
– ident: ref6
  doi: 10.1016/j.ijforecast.2015.11.004
– ident: ref9
  doi: 10.1016/j.energy.2016.08.023
– year: 2019
  ident: ref38
  publication-title: GitHub-Combining Probability Density Forecasts
– ident: ref14
  doi: 10.2307/2527342
– ident: ref27
  doi: 10.1109/TSG.2018.2817284
– ident: ref21
  doi: 10.1016/j.rser.2017.05.234
– ident: ref25
  doi: 10.1109/TSG.2018.2833869
– ident: ref10
  doi: 10.1016/j.apenergy.2017.11.035
– year: 1984
  ident: ref31
  article-title: Selected statistical methods for analysis of load research data
– ident: ref24
  doi: 10.1109/TSG.2013.2280649
– ident: ref7
  doi: 10.1016/j.omega.2014.08.008
– ident: ref36
  doi: 10.1145/2939672.2939785
– ident: ref16
  doi: 10.1109/TSG.2017.2763827
– volume: 2
  year: 2006
  ident: ref32
  publication-title: Gaussian Processes for Machine Learning
– ident: ref18
  doi: 10.1198/jbes.2010.08110
– ident: ref1
  doi: 10.1109/TPWRS.2018.2830785
– ident: ref37
  doi: 10.1023/A:1021765131316
– ident: ref22
  doi: 10.1109/TSG.2013.2274465
– ident: ref20
  doi: 10.1109/TPWRS.2015.2438322
– ident: ref5
  doi: 10.1016/j.ijforecast.2015.11.005
– ident: ref28
  doi: 10.1016/S0047-259X(03)00079-4
– ident: ref17
  doi: 10.1109/TIE.2018.2803732
– ident: ref26
  doi: 10.1109/TSTE.2018.2831238
– ident: ref8
  doi: 10.1109/TSG.2016.2527820
– volume: 18
  start-page: 1
  year: 2017
  ident: ref34
  article-title: GPflow: A Gaussian process library using TensorFlow
  publication-title: J Mach Learn Res
– ident: ref13
  doi: 10.1146/annurev-statistics-062713-085831
– year: 2015
  ident: ref35
  publication-title: Keras
– year: 1975
  ident: ref29
  article-title: Statistical load analysis for distribution network planning
– ident: ref4
  doi: 10.1016/j.ijforecast.2019.02.006
– volume: 1
  start-page: 448
  year: 2015
  ident: ref33
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc 32nd Int Conf Mach Learn (ICML)
– ident: ref11
  doi: 10.1109/TIE.2017.2714127
– ident: ref12
  doi: 10.1016/j.apenergy.2018.02.165
– ident: ref15
  doi: 10.1016/j.ijforecast.2015.11.011
– ident: ref2
  doi: 10.1109/TSG.2018.2818167
– ident: ref23
  doi: 10.1109/TSTE.2015.2441747
– ident: ref30
  doi: 10.1109/TPWRS.2009.2030271
SSID ssj0000333629
Score 2.4909382
Snippet Researchers have proposed various probabilistic load forecasting models in the form of quantiles, densities, or intervals to describe the uncertainties of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1679
SubjectTerms continuous ranked probability score
Density
density forecasting
Electrical loads
Electricity consumption
ensemble learning
Estimation
Forecasting
Gaussian distribution
linearly constrained quadratic programming
Load forecasting
Load modeling
Mathematical models
Optimization
Performance enhancement
Predictive models
Probabilistic load forecasting
Probabilistic logic
Quadratic programming
Quantiles
Statistical analysis
Uncertainty
Title Combining Probability Density Forecasts for Power Electrical Loads
URI https://ieeexplore.ieee.org/document/8843937
https://www.proquest.com/docview/2359902636
Volume 11
WOSCitedRecordID wos000519592100065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEf_JridEoffBHsliZpkzz6semDjIET9lbSNAVBNlk7wf_eS9YNRRF8agsJlN_lcne5y_0ALoi1keXchllUmJBbrnEfpCIkptD4hQECyzzZhBgO5WSiRg24Wt-Fsdb64jPbda8-l5_PzMIdlfWk5K5_2wZsCJEs72qtz1MIY7gXK59E5i6dH7NVVpKo3vjp3pVxqS5VHMN9_s0KeVqVH3uxNzCD3f_92h7s1I5kcL2U_D407PQAtr-0F2zBDSp75gkggtEc9dbXwX4Ed65mHZ-OldPosioDdFyDkaNLC_qeFccJLnic6bw8hOdBf3z7ENacCaGhKqrCSBfG9QCUwqJlLmKWoUcVUXQEZE6KiBiTCW1U5vzEpBCkYFznmlqpdGwsmrEjaE5nU3sMAUZeMlOCUpIlPDeJZlGC-q2JlXFcSN2G3grD1NQNxR2vxWvqAwuiUkQ9dainNeptuFzPeFs20_hjbMuhvB5XA9yGzkpMaa1tZUpZjEaVJiw5-X3WKWxRFyf72rEONKv5wp7BpnmvXsr5uV9In5thw_M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfk1xOrUPvgh2S5O0TR792Jw4x8AJeytpmoIgm6xT8L_3knVDUQSf2kIOyl3uK3e5H8AZMSYwnBs_DXLtc8MV2kEa-0TnCr8wQWCpA5uIez0xHMp-BS4Wd2GMMa75zDTsq6vlZ2P9Zo_KmkJwO79tCVZCzimZ3dZanKgQxtAaS1dG5ragH7J5XZLI5uDx1jZyyQaVSEr5Nz_kgFV-WGPnYtpb__u5bdgsQ0nvcib7HaiY0S5sfBkwWIUrVPfUQUB4_QlqruuE_fBubNc6Pi0up1bFtPAwdPX6FjDNazlcHCs6rztWWbEHT-3W4Lrjl6gJvqYymPqByrWdAihig745D1mKMVVAMRQQGckDonUaKy1TGylGeUxyxlWmqBFShdqgI9uH5dF4ZA7Aw9xLpDKmlKQRz3SkWBChhitiRBjmQtWgOedhosuR4hbZ4iVxqQWRCXI9sVxPSq7X4HxB8Tobp_HH2qrl8mJdyeAa1OdiSkp9KxLKQnSrNGLR4e9Up7DWGTx0k-5d7_4I1qnNml0nWR2Wp5M3cwyr-n36XExO3Kb6BPsYxzo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Probability+Density+Forecasts+for+Power+Electrical+Loads&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Li%2C+Tianyi&rft.au=Wang%2C+Yi&rft.au=Zhang%2C+Ning&rft.date=2020-03-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=11&rft.issue=2&rft.spage=1679&rft.epage=1690&rft_id=info:doi/10.1109%2FTSG.2019.2942024&rft.externalDocID=8843937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon