Trajectory Optimization and Model Predictive Control for Functional Electrical Stimulation-Controlled Reaching
Functional electrical stimulation (FES) offers promise as a technology to restore reaching motions to individuals with spinal cord injuries. To date, the level of reaching necessary for everyday use has not been achieved due to the complexity and limitations of the arm and muscles of an individual w...
Gespeichert in:
| Veröffentlicht in: | IEEE robotics and automation letters Jg. 7; H. 2; S. 3093 - 3098 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Functional electrical stimulation (FES) offers promise as a technology to restore reaching motions to individuals with spinal cord injuries. To date, the level of reaching necessary for everyday use has not been achieved due to the complexity and limitations of the arm and muscles of an individual with a spinal cord injury. To improve the performance of FES-driven reaching controllers, we developed a trajectory optimization and model predictive control scheme that incorporates knowledge of the person-specific muscle capabilities and arm dynamics. Our controller achieved 3D reaching motions with an average accuracy of 8.5 cm and demonstrated an ability to reach targets throughout the workspace. With improvements to the model, this control scheme has the potential to unlock many daily reaching tasks for individuals with spinal cord injuries. |
|---|---|
| AbstractList | Functional electrical stimulation (FES) offers promise as a technology to restore reaching motions to individuals with spinal cord injuries. To date, the level of reaching necessary for everyday use has not been achieved due to the complexity and limitations of the arm and muscles of an individual with a spinal cord injury. To improve the performance of FES-driven reaching controllers, we developed a trajectory optimization and model predictive control scheme that incorporates knowledge of the person-specific muscle capabilities and arm dynamics. Our controller achieved 3D reaching motions with an average accuracy of 8.5 cm and demonstrated an ability to reach targets throughout the workspace. With improvements to the model, this control scheme has the potential to unlock many daily reaching tasks for individuals with spinal cord injuries. |
| Author | Wolf, Derek N. Schearer, Eric M. |
| Author_xml | – sequence: 1 givenname: Derek N. orcidid: 0000-0002-3383-2319 surname: Wolf fullname: Wolf, Derek N. email: derekwolf19@gmail.com organization: Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA – sequence: 2 givenname: Eric M. orcidid: 0000-0001-8583-0705 surname: Schearer fullname: Schearer, Eric M. email: e.schearer@csuohio.edu organization: Center for Human-Machine Systems, Cleveland State University, the Cleveland Functional Electrical Stimulation Center, and the Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, USA |
| BookMark | eNp9kEtLAzEUhYNUsNbuBTcB11PzmEmaZSmtCpVKreshzUNT0knNZIT6650-EHHh6p7F9x0u5xJ0qlAZAK4xGmCMxN1sMRoQRMiA4rwQOTsDXUI5zyhnrPMrX4B-Xa8RQrggnIqiC6pllGujUog7ON8mt3FfMrlQQVlp-BS08fA5Gu1Ucp8GjkOVYvDQhginTaX2pPRw4tuG6FQbX9qKxh8qshPtjYYLI9W7q96uwLmVvjb90-2B1-lkOX7IZvP7x_FolikicMqwKLTWeW6IRTpHK4EUJpjxIcGWcS24xYrqlSmMUJZiynOdE4sLJJlkXGnaA7fH3m0MH42pU7kOTWx_rUvCSEEZw1S0FDtSKoa6jsaWyqXD7ylK50uMyv28ZTtvuZ-3PM3biuiPuI1uI-PuP-XmqDhjzA8umMDDYU6_AToviLY |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1109_LRA_2025_3548535 crossref_primary_10_1088_2632_2153_ad4e05 crossref_primary_10_1088_1741_2552_ad731f crossref_primary_10_1109_TNSRE_2023_3334190 crossref_primary_10_1016_j_conengprac_2024_106134 crossref_primary_10_1109_TNSRE_2023_3272929 crossref_primary_10_3389_fnbot_2023_1127783 crossref_primary_10_1016_j_ifacol_2022_10_183 |
| Cites_doi | 10.1186/1743-0003-10-66 10.1007/s11517-009-0479-3 10.1109/ICRA40945.2020.9196992 10.3389/fnins.2014.00262 10.1016/S0140-6736(17)30601-3 10.1016/j.conengprac.2016.03.005 10.1109/TNSRE.2018.2866226 10.1109/ICORR.2019.8779381 10.1109/TNSRE.2014.2364735 10.1007/978-1-4614-1171-0 10.1109/TNSRE.2018.2853573 10.1016/j.jbiomech.2009.12.012 10.1016/j.jbiomech.2004.05.042 10.1109/10.8670 10.1109/86.313149 10.1109/TBME.2008.2005946 10.1016/j.jbiomech.2009.12.017 10.1109/10.32097 10.1109/ICORR.2017.8009344 10.1109/TNSRE.2016.2535348 10.1109/ADPRL.2014.7010608 10.1109/TNSRE.2010.2079952 10.1002/mus.20758 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2022.3145946 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 3098 |
| ExternalDocumentID | 10_1109_LRA_2022_3145946 9691884 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: 1751821 – fundername: Veteran's Affairs grantid: B2359-C – fundername: NIH NINDS grantid: N01-NS-5-2365 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-195ddd44e2f0d40b90c12167821f67d97f1c3dbe5e9cf31374d42f150a6a67cd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752014300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Mon Jun 30 06:56:01 EDT 2025 Sat Nov 29 06:03:14 EST 2025 Tue Nov 18 22:45:35 EST 2025 Wed Aug 27 02:39:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-195ddd44e2f0d40b90c12167821f67d97f1c3dbe5e9cf31374d42f150a6a67cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8583-0705 0000-0002-3383-2319 |
| PQID | 2625366139 |
| PQPubID | 4437225 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2625366139 crossref_citationtrail_10_1109_LRA_2022_3145946 ieee_primary_9691884 crossref_primary_10_1109_LRA_2022_3145946 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 Wchter (ref15) 2002 ref18 ref24 ref23 ref25 ref22 ref21 Levinson (ref20) 1990 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – start-page: 81 volume-title: AUTOLEV A. New Approach to Multibody Dynamics BT - Multibody Systems Handbook year: 1990 ident: ref20 – ident: ref4 doi: 10.1186/1743-0003-10-66 – ident: ref2 doi: 10.1007/s11517-009-0479-3 – ident: ref8 doi: 10.1109/ICRA40945.2020.9196992 – ident: ref3 doi: 10.3389/fnins.2014.00262 – ident: ref5 doi: 10.1016/S0140-6736(17)30601-3 – ident: ref11 doi: 10.1016/j.conengprac.2016.03.005 – year: 2002 ident: ref15 article-title: An interior point algorithm for large-scale nonlinear optimization with applications in process engineering – ident: ref7 doi: 10.1109/TNSRE.2018.2866226 – ident: ref24 doi: 10.1109/ICORR.2019.8779381 – ident: ref10 doi: 10.1109/TNSRE.2014.2364735 – ident: ref23 doi: 10.1007/978-1-4614-1171-0 – ident: ref6 doi: 10.1109/TNSRE.2018.2853573 – ident: ref21 doi: 10.1016/j.jbiomech.2009.12.012 – ident: ref18 doi: 10.1016/j.jbiomech.2004.05.042 – ident: ref14 doi: 10.1109/10.8670 – ident: ref13 doi: 10.1109/86.313149 – ident: ref19 doi: 10.1109/TBME.2008.2005946 – ident: ref1 doi: 10.1016/j.jbiomech.2009.12.017 – ident: ref22 doi: 10.1109/10.32097 – ident: ref17 doi: 10.1109/ICORR.2017.8009344 – ident: ref16 doi: 10.1109/TNSRE.2016.2535348 – ident: ref25 doi: 10.1109/ADPRL.2014.7010608 – ident: ref12 doi: 10.1109/TNSRE.2010.2079952 – ident: ref9 doi: 10.1002/mus.20758 |
| SSID | ssj0001527395 |
| Score | 2.2736013 |
| Snippet | Functional electrical stimulation (FES) offers promise as a technology to restore reaching motions to individuals with spinal cord injuries. To date, the level... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3093 |
| SubjectTerms | Computational modeling Data models Manipulators Mathematical models Model learning for control motion and path planning motion control Muscles Predictive control prosthetics and exoskeletons rehabilitation robotics Shoulder Spinal cord injuries Stimulation Trajectory optimization |
| Title | Trajectory Optimization and Model Predictive Control for Functional Electrical Stimulation-Controlled Reaching |
| URI | https://ieeexplore.ieee.org/document/9691884 https://www.proquest.com/docview/2625366139 |
| Volume | 7 |
| WOSCitedRecordID | wos000752014300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH5Y8aAHd7FaSw5eBMdOliaTYyktHlxKXfA2TLOAUkepVfDibzfJpFVQBG9zeAnDfJm3530Ah4wRIUZCJDYzPGEZl0lhKU2UKLgpnHLAITVweyYuLrK7OzlYgOP5XRhjTGg-Myf-MdTy9ZN69amyluQSZxmrQU0IXt3V-sqn-Elisj2rRKaydTbsuPiPEBeWsrb0Hu43yxOoVH7o32BU-mv_e511WI3OI-pUaG_Agik3YeXbSMEtKJ3xeQiZ-Hd06dTBY7xniYpSI098NkaDiS_OeDWHulWjOnKeK-o7C1clBlEvcON4-NCV2yIyfCVRemw0GsYmzG246feuu6dJ5FRIFJF4mmDZ1lozZohNNUtHMlWYYGexCLZcaCksVlSPTNtIZSmmgmlGrPMaC15woTTdgcXyqTS7gLgeuS38_DLPGaN5xrDC1CqWSatpqurQmn3vXMWB4573YpyHwCOVuUMo9wjlEaE6HM1XPFfDNv6Q3fKIzOUiGHVozCDN49_4khMX5FHniFC59_uqfVj2e1cdOQ1YnE5ezQEsqbfp_cukCbXzj14zHLdPdcvUag |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64gXpwF8c1By-CdZqlSXMUcVAcR3HDW-lkAWWsMo6C_94kzYyCInjrIUvpl7497wPYZYwI0RUisbnhCcu5TEpLaaJEyU3phAMOoYG7tuh08vt7eTkG-6O7MMaYUHxmDvxjyOXrZ_XmQ2VNySXOczYOk5nbI61va31FVHwvMZkNc5GpbLavDp0HSIhzTFkmvY37TfcEMpUfEjioldb8_15oAeai-YgOa7wXYcxUSzD7rangMlRO_TyGWPwHunAC4SnetERlpZGnPuuhy75Pz3hBh47qUnXkbFfUcjquDg2i48CO4wFE126JyPGVxNE9o9FVLMNcgdvW8c3RSRJZFRJFJB4kWGZaa8YMsalmaVemChPsdBbBlgsthcWK6q7JjFSWYiqYZsQ6u7HkJRdK01WYqJ4rswaI665bwncw86wxmucMK0ytYrm0mqaqAc3h9y5UbDnumS96RXA9Ulk4hAqPUBERasDeaMZL3W7jj7HLHpHRuAhGAzaHkBbxf3wtiHPzqDNFqFz_fdYOTJ_cnLeL9mnnbANm_D51fc4mTAz6b2YLptT74OG1vx0O3SefwNaA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Optimization+and+Model+Predictive+Control+for+Functional+Electrical+Stimulation-Controlled+Reaching&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Wolf%2C+Derek+N.&rft.au=Schearer%2C+Eric+M.&rft.date=2022-04-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=7&rft.issue=2&rft.spage=3093&rft.epage=3098&rft_id=info:doi/10.1109%2FLRA.2022.3145946&rft.externalDocID=9691884 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |