Online Design of Optimal Precoders for High Dimensional Signal Detection

In this paper, we propose a novel methodology to design optimal precoders for distributed detection of high-dimensional signals. We consider a wireless sensor network (WSN) that consists of multiple sensors that are spatially distributed in a region of interest and a fusion center (FC). The sensors...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 67; číslo 15; s. 4122 - 4135
Hlavní autoři: Khanduri, Prashant, Theagarajan, Lakshmi Narasimhan, Varshney, Pramod K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a novel methodology to design optimal precoders for distributed detection of high-dimensional signals. We consider a wireless sensor network (WSN) that consists of multiple sensors that are spatially distributed in a region of interest and a fusion center (FC). The sensors observe an unknown high-dimensional signal and forward their observations to the FC after precoding. The sensors collect data over both temporal and spatial domains. The FC performs a binary hypothesis test based on the data received from the sensors over noisy channels. In this setup, we present a technique to design optimal online linear precoding strategies with transmit power constraints. We show analytically that the error exponents achieved by the proposed precoders are independent of the signal dimension. In contrast, the error exponents of the state-of-the-art precoding strategies deteriorate with the increase in signal dimension. We verify our analysis via numerical simulations and show that the proposed precoders achieve better detection performance compared to those of other state-of-the-art techniques known in the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2019.2924583