Online Design of Optimal Precoders for High Dimensional Signal Detection

In this paper, we propose a novel methodology to design optimal precoders for distributed detection of high-dimensional signals. We consider a wireless sensor network (WSN) that consists of multiple sensors that are spatially distributed in a region of interest and a fusion center (FC). The sensors...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 67; no. 15; pp. 4122 - 4135
Main Authors: Khanduri, Prashant, Theagarajan, Lakshmi Narasimhan, Varshney, Pramod K.
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose a novel methodology to design optimal precoders for distributed detection of high-dimensional signals. We consider a wireless sensor network (WSN) that consists of multiple sensors that are spatially distributed in a region of interest and a fusion center (FC). The sensors observe an unknown high-dimensional signal and forward their observations to the FC after precoding. The sensors collect data over both temporal and spatial domains. The FC performs a binary hypothesis test based on the data received from the sensors over noisy channels. In this setup, we present a technique to design optimal online linear precoding strategies with transmit power constraints. We show analytically that the error exponents achieved by the proposed precoders are independent of the signal dimension. In contrast, the error exponents of the state-of-the-art precoding strategies deteriorate with the increase in signal dimension. We verify our analysis via numerical simulations and show that the proposed precoders achieve better detection performance compared to those of other state-of-the-art techniques known in the literature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2019.2924583