YDTR: Infrared and Visible Image Fusion via Y-Shape Dynamic Transformer

Infrared and visible image fusion is aims to generate a composite image that can simultaneously describe the salient target in the infrared image and texture details in the visible image of the same scene. Since deep learning (DL) exhibits great feature extraction ability in computer vision tasks, i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on multimedia Ročník 25; s. 5413 - 5428
Hlavní autoři: Tang, Wei, He, Fazhi, Liu, Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1520-9210, 1941-0077
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Infrared and visible image fusion is aims to generate a composite image that can simultaneously describe the salient target in the infrared image and texture details in the visible image of the same scene. Since deep learning (DL) exhibits great feature extraction ability in computer vision tasks, it has also been widely employed in handling infrared and visible image fusion issue. However, the existing DL-based methods generally extract complementary information from source images through convolutional operations, which results in limited preservation of global features. To this end, we propose a novel infrared and visible image fusion method, i.e., the Y-shape dynamic Transformer (YDTR). Specifically, a dynamic Transformer module (DTRM) is designed to acquire not only the local features but also the significant context information. Furthermore, the proposed network is devised in a Y-shape to comprehensively maintain the thermal radiation information from the infrared image and scene details from the visible image. Considering the specific information provided by the source images, we design a loss function that consists of two terms to improve fusion quality: a structural similarity (SSIM) term and a spatial frequency (SF) term. Extensive experiments on mainstream datasets illustrate that the proposed method outperforms both classical and state-of-the-art approaches in both qualitative and quantitative assessments. We further extend the YDTR to address other infrared and RGB-visible images and multi-focus images without fine-tuning, and the satisfactory fusion results demonstrate that the proposed method has good generalization capability.
AbstractList Infrared and visible image fusion is aims to generate a composite image that can simultaneously describe the salient target in the infrared image and texture details in the visible image of the same scene. Since deep learning (DL) exhibits great feature extraction ability in computer vision tasks, it has also been widely employed in handling infrared and visible image fusion issue. However, the existing DL-based methods generally extract complementary information from source images through convolutional operations, which results in limited preservation of global features. To this end, we propose a novel infrared and visible image fusion method, i.e., the Y-shape dynamic Transformer (YDTR). Specifically, a dynamic Transformer module (DTRM) is designed to acquire not only the local features but also the significant context information. Furthermore, the proposed network is devised in a Y-shape to comprehensively maintain the thermal radiation information from the infrared image and scene details from the visible image. Considering the specific information provided by the source images, we design a loss function that consists of two terms to improve fusion quality: a structural similarity (SSIM) term and a spatial frequency (SF) term. Extensive experiments on mainstream datasets illustrate that the proposed method outperforms both classical and state-of-the-art approaches in both qualitative and quantitative assessments. We further extend the YDTR to address other infrared and RGB-visible images and multi-focus images without fine-tuning, and the satisfactory fusion results demonstrate that the proposed method has good generalization capability.
Author He, Fazhi
Tang, Wei
Liu, Yu
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-8995-705X
  surname: Tang
  fullname: Tang, Wei
  email: weitang2021@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Fazhi
  orcidid: 0000-0001-7016-3698
  surname: He
  fullname: He, Fazhi
  email: fzhe@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Yu
  orcidid: 0000-0003-2211-3535
  surname: Liu
  fullname: Liu, Yu
  email: yuliu@hfut.edu.cn
  organization: Department of Biomedical Engineering, Hefei University of Technology, Hefei, China
BookMark eNp9kEFLAzEQRoNUsK3eBS8Bz1tnkt1N4k1aWwstgq5CT0t2m9WUNluTrdB_75YWDx68zMzhezPM65GOq50h5BphgAjqLpvPBwwYG3BULE3xjHRRxRgBCNFp54RBpBjCBemFsALAOAHRJZPFKHu5p1NXee3Nkmq3pO822GJt6HSjPwwd74KtHf22mi6i10-9NXS0d3pjS5p57UJV-43xl-S80utgrk69T97Gj9nwKZo9T6bDh1lUMoVNhLIAVSSqiBG0SnSqQEJapFyJZcolK4RQBgEqNIqLoihLqRhrS4UoRCl4n9we9259_bUzoclX9c679mTOpIyl4inINpUeU6WvQ_Cmykvb6Kb9o_HarnOE_CAtb6XlB2n5SVoLwh9w6-1G-_1_yM0RscaY37iSPEYu-A8JI3ZI
CODEN ITMUF8
CitedBy_id crossref_primary_10_1007_s00354_025_00292_7
crossref_primary_10_1016_j_neucom_2025_130062
crossref_primary_10_1016_j_patcog_2025_111468
crossref_primary_10_1109_TGRS_2024_3355968
crossref_primary_10_1016_j_patcog_2024_110774
crossref_primary_10_3390_s23167097
crossref_primary_10_1016_j_jvcir_2024_104350
crossref_primary_10_1109_JSEN_2025_3571945
crossref_primary_10_1109_LSP_2025_3578250
crossref_primary_10_1016_j_cosrev_2025_100804
crossref_primary_10_3390_app131910891
crossref_primary_10_1016_j_imavis_2025_105709
crossref_primary_10_1109_TITS_2024_3426539
crossref_primary_10_1109_TPAMI_2024_3521416
crossref_primary_10_1016_j_ins_2024_121291
crossref_primary_10_1109_TGRS_2024_3389976
crossref_primary_10_1109_TPAMI_2025_3572599
crossref_primary_10_1016_j_engappai_2024_109521
crossref_primary_10_1109_TMM_2025_3543053
crossref_primary_10_1016_j_optlastec_2024_111396
crossref_primary_10_1016_j_optlastec_2025_112763
crossref_primary_10_1109_JSEN_2024_3426274
crossref_primary_10_1109_LSP_2024_3509341
crossref_primary_10_1109_TIM_2025_3527616
crossref_primary_10_3390_s22249739
crossref_primary_10_3390_electronics12132773
crossref_primary_10_1016_j_neucom_2025_129592
crossref_primary_10_3390_rs16173136
crossref_primary_10_1016_j_inffus_2025_103433
crossref_primary_10_1007_s00371_023_02811_3
crossref_primary_10_1016_j_bspc_2025_107890
crossref_primary_10_1109_TIM_2023_3328710
crossref_primary_10_1007_s00371_025_03840_w
crossref_primary_10_1016_j_infrared_2025_105804
crossref_primary_10_3390_s24082466
crossref_primary_10_1007_s00371_024_03422_2
crossref_primary_10_1109_ACCESS_2024_3488315
crossref_primary_10_1016_j_measurement_2024_114977
crossref_primary_10_1016_j_patcog_2024_110822
crossref_primary_10_1016_j_inffus_2025_103031
crossref_primary_10_1016_j_imavis_2025_105566
crossref_primary_10_1016_j_displa_2025_103118
crossref_primary_10_1364_PRJ_559833
crossref_primary_10_1016_j_infrared_2025_106052
crossref_primary_10_1109_TMM_2024_3410113
crossref_primary_10_1109_TPAMI_2025_3535617
crossref_primary_10_1145_3665893
crossref_primary_10_1007_s00371_023_02827_9
crossref_primary_10_1007_s10489_023_04576_7
crossref_primary_10_1109_TETCI_2025_3542146
crossref_primary_10_3390_ai6090229
crossref_primary_10_3389_fnbot_2024_1521603
crossref_primary_10_3390_electronics13122365
crossref_primary_10_1007_s00371_023_02784_3
crossref_primary_10_1007_s11760_025_04549_y
crossref_primary_10_1016_j_ultrasmedbio_2025_02_001
crossref_primary_10_1109_TMM_2024_3366150
crossref_primary_10_1016_j_neucom_2022_12_042
crossref_primary_10_1109_TMM_2025_3535291
crossref_primary_10_3390_math12142189
crossref_primary_10_1007_s00371_023_03003_9
crossref_primary_10_1016_j_infrared_2025_105728
crossref_primary_10_1109_TIM_2023_3318709
crossref_primary_10_1109_ACCESS_2024_3412157
crossref_primary_10_1007_s10489_023_04607_3
crossref_primary_10_1016_j_engappai_2023_106112
crossref_primary_10_1016_j_infrared_2024_105209
crossref_primary_10_1016_j_optlastec_2025_112612
crossref_primary_10_1109_LSP_2023_3309153
crossref_primary_10_1016_j_dsp_2025_105200
crossref_primary_10_1109_TGRS_2025_3527515
crossref_primary_10_1109_ACCESS_2025_3577033
crossref_primary_10_3390_s25030791
crossref_primary_10_1016_j_measurement_2024_115092
crossref_primary_10_1016_j_optlastec_2025_112971
crossref_primary_10_1016_j_optlastec_2025_113544
crossref_primary_10_1109_TMM_2024_3521752
crossref_primary_10_1145_3737646
crossref_primary_10_1109_TMM_2024_3521751
crossref_primary_10_1109_TMM_2025_3535284
crossref_primary_10_1109_TIM_2023_3342223
crossref_primary_10_1016_j_eswa_2025_128895
crossref_primary_10_1109_JIOT_2025_3569573
crossref_primary_10_1109_TCE_2023_3341852
crossref_primary_10_1016_j_imavis_2024_105161
crossref_primary_10_1109_TIP_2024_3512365
crossref_primary_10_1109_JSEN_2024_3371056
crossref_primary_10_1016_j_knosys_2024_111949
crossref_primary_10_1109_TIP_2025_3593775
crossref_primary_10_1016_j_aei_2025_103251
crossref_primary_10_1109_TCSVT_2024_3412743
crossref_primary_10_1109_TCSVT_2023_3234340
crossref_primary_10_32604_cmc_2024_053708
crossref_primary_10_1016_j_infrared_2022_104466
crossref_primary_10_1016_j_infrared_2025_106005
crossref_primary_10_1007_s40747_025_02046_w
crossref_primary_10_1109_TIM_2024_3457951
crossref_primary_10_1016_j_knosys_2025_114027
crossref_primary_10_1016_j_optlastec_2025_113895
crossref_primary_10_1109_TCSVT_2024_3449638
crossref_primary_10_1109_TMM_2024_3521840
crossref_primary_10_3233_ICA_230700
crossref_primary_10_1007_s00371_022_02727_4
crossref_primary_10_1016_j_sigpro_2025_110073
crossref_primary_10_3390_bdcc9040092
crossref_primary_10_1109_ACCESS_2022_3226564
crossref_primary_10_1109_JSEN_2023_3263336
crossref_primary_10_1109_TCE_2025_3565680
crossref_primary_10_3934_era_2025245
crossref_primary_10_1016_j_ipm_2023_103612
crossref_primary_10_1016_j_eswa_2025_127229
crossref_primary_10_1007_s00371_025_03841_9
crossref_primary_10_1109_ACCESS_2025_3540007
crossref_primary_10_1371_journal_pone_0282909
crossref_primary_10_1016_j_inffus_2025_103754
crossref_primary_10_1016_j_infrared_2025_106012
crossref_primary_10_1109_TMM_2024_3521848
crossref_primary_10_1049_ipr2_70086
crossref_primary_10_1109_TMM_2025_3543002
crossref_primary_10_1016_j_engappai_2025_111123
crossref_primary_10_1109_JAS_2022_106082
crossref_primary_10_3390_app13052907
crossref_primary_10_1109_TGRS_2025_3591809
crossref_primary_10_1109_TMM_2025_3535341
crossref_primary_10_1007_s00530_025_01908_0
crossref_primary_10_3390_s24248217
crossref_primary_10_1016_j_optlaseng_2025_109287
crossref_primary_10_1109_JSEN_2024_3410387
crossref_primary_10_1007_s11263_023_01924_5
crossref_primary_10_1109_JSEN_2023_3262775
crossref_primary_10_1109_TPAMI_2024_3475485
crossref_primary_10_1016_j_inffus_2025_103025
crossref_primary_10_1016_j_patcog_2025_111843
crossref_primary_10_3390_s24010020
crossref_primary_10_1109_TIM_2024_3398115
crossref_primary_10_1109_TCSVT_2025_3544746
crossref_primary_10_1109_TGRS_2025_3583579
crossref_primary_10_32604_cmc_2024_048136
crossref_primary_10_1016_j_infrared_2025_106067
crossref_primary_10_1109_TMM_2023_3347099
crossref_primary_10_1016_j_infrared_2025_105895
crossref_primary_10_1016_j_optlastec_2025_112823
crossref_primary_10_1016_j_optlastec_2025_113075
crossref_primary_10_1007_s11263_025_02409_3
crossref_primary_10_1109_TCI_2024_3436716
crossref_primary_10_1016_j_ipm_2024_103687
crossref_primary_10_1016_j_knosys_2023_110303
crossref_primary_10_1007_s00371_022_02649_1
crossref_primary_10_1109_TNNLS_2024_3454811
crossref_primary_10_1007_s00371_024_03347_w
crossref_primary_10_1016_j_patcog_2024_110728
crossref_primary_10_3390_s25165083
crossref_primary_10_1109_TIM_2024_3374294
crossref_primary_10_1109_TMM_2025_3543019
crossref_primary_10_1007_s11042_024_19659_x
crossref_primary_10_1002_mp_17607
crossref_primary_10_1109_TPAMI_2024_3523364
crossref_primary_10_1109_TIM_2025_3527542
crossref_primary_10_1109_JSEN_2025_3575460
crossref_primary_10_1109_LSP_2024_3486113
crossref_primary_10_1088_1361_6501_ae0147
crossref_primary_10_1016_j_optlaseng_2025_109265
crossref_primary_10_1109_JAS_2024_124878
crossref_primary_10_1016_j_ipm_2023_103304
crossref_primary_10_1016_j_patcog_2025_111391
Cites_doi 10.1016/j.inffus.2021.02.023
10.1016/j.inffus.2005.10.001
10.1155/2019/5450373
10.1007/s11263-006-6655-0
10.1016/0167-8655(89)90003-2
10.1016/j.patcog.2010.08.006
10.1049/el:20081754
10.1016/j.inffus.2014.09.004
10.1109/CVPR46437.2021.00863
10.1109/ACSSC.2003.1292216
10.1016/j.inffus.2018.09.004
10.1016/j.inffus.2006.02.001
10.1016/j.inffus.2016.05.004
10.1016/j.inffus.2017.10.007
10.1109/CVPR46437.2021.00681
10.1109/TIM.2020.3029360
10.48550/arXiv.2102.04306
10.1109/TIP.2020.2977573
10.1109/TCSVT.2021.3075745
10.1016/j.inffus.2012.01.008
10.1109/TMM.2020.3016123
10.1142/S0219691318500182
10.1109/TMM.2020.3020695
10.1016/j.inffus.2018.02.004
10.1109/TCI.2021.3083965
10.18653/v1/P19-1285
10.1109/TMM.2020.2997127
10.1016/j.inffus.2019.12.014
10.1016/j.optcom.2014.12.048
10.1109/TMM.2017.2760100
10.1109/TIP.2009.2025006
10.1109/ICMIPE53131.2021.9698938
10.1609/aaai.v34i07.6936
10.1609/aaai.v34i07.6975
10.1109/TPAMI.2020.3015691
10.1016/j.inffus.2022.03.007
10.48550/ARXIV.1706.03762
10.1109/ICITBE54178.2021.00025
10.1109/TMM.2009.2017640
10.1109/TIM.2020.3038013
10.1016/j.inffus.2021.06.008
10.1016/j.physd.2004.11.001
10.1109/TIP.2003.819861
10.1109/26.477498
10.1109/TPAMI.2011.109
10.1109/TCI.2021.3100986
10.1109/TIP.2018.2887342
10.1109/TCSVT.2021.3056725
10.1016/j.inffus.2008.08.008
10.1109/TMM.2020.2978640
10.1109/TPAMI.2020.3012548
10.1109/TMM.2020.3037526
10.1016/j.ins.2017.09.010
10.1016/j.inffus.2017.05.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2022.3192661
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 5428
ExternalDocumentID 10_1109_TMM_2022_3192661
9834137
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Major Project of Hubei Province
– fundername: National Natural Science Foundation of China
  grantid: 62072348; 62176081
  funderid: 10.13039/501100001809
– fundername: Next-Generation AI Technologies
  grantid: 2019AEA170
– fundername: National Key Research and Development Program of China; National Key R&D Program of China
  grantid: 2018AAA0101104
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-18b09b59b410a95a690806b6397d6382b779e100f1e937bbcc8922c89f1177c73
IEDL.DBID RIE
ISICitedReferencesCount 272
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001097340300057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-9210
IngestDate Mon Jun 30 03:11:38 EDT 2025
Tue Nov 18 22:12:49 EST 2025
Sat Nov 29 08:06:07 EST 2025
Wed Aug 27 01:39:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-18b09b59b410a95a690806b6397d6382b779e100f1e937bbcc8922c89f1177c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2211-3535
0000-0001-7016-3698
0000-0001-8995-705X
PQID 2884893608
PQPubID 75737
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TMM_2022_3192661
crossref_primary_10_1109_TMM_2022_3192661
ieee_primary_9834137
proquest_journals_2884893608
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
Devlin (ref38) 2018
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
Fu (ref32) 2021
ref46
ref45
ref47
ref42
ref44
ref49
Tang (ref54) 2019; 2019
ref8
ref7
VS (ref30) 2021
ref9
ref4
Zhao (ref48) 2007; 3
ref3
ref6
ref5
ref40
Wang (ref43) 2021
ref35
ref34
ref37
ref36
ref31
Chen (ref50) 2007; 8
Rao (ref33) 2022
ref2
ref1
Dosovitskiy (ref41) 2020
Kingma (ref58) 2014
Xiao (ref51) 2021; 34
Li (ref63) 2015; 342
Li (ref62) 2017
ref24
ref23
ref26
ref25
ref20
ref64
ref22
ref21
Eskicioglu (ref53) 1995; 43
ref65
Yang (ref39) 2019; 32
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref23
  doi: 10.1016/j.inffus.2021.02.023
– volume: 8
  start-page: 193
  year: 2007
  ident: ref50
  article-title: A human perception inspired quality metric for image fusion based on regional information
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2005.10.001
– volume: 2019
  year: 2019
  ident: ref54
  article-title: Green fluorescent protein and phase-contrast image fusion via generative adversarial networks
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2019/5450373
– year: 2014
  ident: ref58
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref6
  doi: 10.1007/s11263-006-6655-0
– ident: ref8
  doi: 10.1016/0167-8655(89)90003-2
– ident: ref7
  doi: 10.1016/j.patcog.2010.08.006
– ident: ref46
  doi: 10.1049/el:20081754
– ident: ref13
  doi: 10.1016/j.inffus.2014.09.004
– ident: ref45
  doi: 10.1109/CVPR46437.2021.00863
– ident: ref49
  doi: 10.1109/ACSSC.2003.1292216
– volume: 34
  start-page: 1
  year: 2021
  ident: ref51
  article-title: Early convolutions help transformers see better
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– ident: ref19
  doi: 10.1016/j.inffus.2018.09.004
– ident: ref9
  doi: 10.1016/j.inffus.2006.02.001
– ident: ref34
  doi: 10.1016/j.inffus.2016.05.004
– year: 2021
  ident: ref30
  article-title: Image fusion transformer
  publication-title: arXiv:2107.09011
– ident: ref35
  doi: 10.1016/j.inffus.2017.10.007
– ident: ref42
  doi: 10.1109/CVPR46437.2021.00681
– ident: ref27
  doi: 10.1109/TIM.2020.3029360
– start-page: 568
  volume-title: Proc. IEEE/CVF Int. Conf. Comput. Vis.
  year: 2021
  ident: ref43
  article-title: Pyramid vision transformer: A versatile backbone for dense prediction without convolutions
– ident: ref44
  doi: 10.48550/arXiv.2102.04306
– ident: ref21
  doi: 10.1109/TIP.2020.2977573
– ident: ref26
  doi: 10.1109/TCSVT.2021.3075745
– ident: ref12
  doi: 10.1016/j.inffus.2012.01.008
– start-page: 675
  volume-title: Proc. Int. Conf. Image Graph.
  year: 2017
  ident: ref62
  article-title: Multi-focus image fusion using dictionary learning and low-rank representation
– ident: ref22
  doi: 10.1109/TMM.2020.3016123
– ident: ref25
  doi: 10.1142/S0219691318500182
– ident: ref17
  doi: 10.1109/TMM.2020.3020695
– ident: ref3
  doi: 10.1016/j.inffus.2018.02.004
– ident: ref55
  doi: 10.1109/TCI.2021.3083965
– ident: ref40
  doi: 10.18653/v1/P19-1285
– ident: ref2
  doi: 10.1109/TMM.2020.2997127
– ident: ref5
  doi: 10.1016/j.inffus.2019.12.014
– volume: 342
  start-page: 1
  year: 2015
  ident: ref63
  article-title: Multi-focus image fusion based on sparse feature matrix decomposition and morphological filtering
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.12.048
– ident: ref14
  doi: 10.1109/TMM.2017.2760100
– ident: ref10
  doi: 10.1109/TIP.2009.2025006
– ident: ref61
  doi: 10.1109/ICMIPE53131.2021.9698938
– ident: ref65
  doi: 10.1609/aaai.v34i07.6936
– ident: ref64
  doi: 10.1609/aaai.v34i07.6975
– ident: ref57
  doi: 10.1109/TPAMI.2020.3015691
– ident: ref60
  doi: 10.1016/j.inffus.2022.03.007
– ident: ref37
  doi: 10.48550/ARXIV.1706.03762
– ident: ref31
  doi: 10.1109/ICITBE54178.2021.00025
– volume: 3
  start-page: 1433
  issue: 6
  year: 2007
  ident: ref48
  article-title: Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement
  publication-title: Int. J. Innov. Comput. Inf. Control
– year: 2021
  ident: ref32
  article-title: PPT fusion: Pyramid patch transformer for a case study in image fusion
  publication-title: arXiv:2107.13967
– ident: ref11
  doi: 10.1109/TMM.2009.2017640
– ident: ref24
  doi: 10.1109/TIM.2020.3038013
– year: 2020
  ident: ref41
  article-title: An image is worth $16\times 16$ words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref36
  doi: 10.1016/j.inffus.2021.06.008
– ident: ref47
  doi: 10.1016/j.physd.2004.11.001
– volume: 32
  start-page: 1
  year: 2019
  ident: ref39
  article-title: XLNet: Generalized autoregressive pretraining for language understanding
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– ident: ref52
  doi: 10.1109/TIP.2003.819861
– volume: 43
  start-page: 2959
  issue: 12
  year: 1995
  ident: ref53
  article-title: Image quality measures and their performance
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.477498
– ident: ref59
  doi: 10.1109/TPAMI.2011.109
– ident: ref29
  doi: 10.1109/TCI.2021.3100986
– ident: ref18
  doi: 10.1109/TIP.2018.2887342
– ident: ref28
  doi: 10.1109/TCSVT.2021.3056725
– year: 2022
  ident: ref33
  article-title: TGFuse: An infrared and visible image fusion approach based on transformer and generative adversarial network
  publication-title: arXiv:2201.10147
– ident: ref4
  doi: 10.1016/j.inffus.2008.08.008
– ident: ref1
  doi: 10.1109/TMM.2020.2978640
– ident: ref20
  doi: 10.1109/TPAMI.2020.3012548
– year: 2018
  ident: ref38
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv:1810.04805
– ident: ref56
  doi: 10.1109/TMM.2020.3037526
– ident: ref16
  doi: 10.1016/j.ins.2017.09.010
– ident: ref15
  doi: 10.1016/j.inffus.2017.05.006
SSID ssj0014507
Score 2.7041419
Snippet Infrared and visible image fusion is aims to generate a composite image that can simultaneously describe the salient target in the infrared image and texture...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5413
SubjectTerms Computer vision
Dynamic transformer
Feature extraction
Image fusion
Image segmentation
infrared image
Infrared imagery
Roads
Task analysis
Thermal radiation
Training
Transformers
Y-shape network
Title YDTR: Infrared and Visible Image Fusion via Y-Shape Dynamic Transformer
URI https://ieeexplore.ieee.org/document/9834137
https://www.proquest.com/docview/2884893608
Volume 25
WOSCitedRecordID wos001097340300057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHq61itcoevAjGbtIku-tNrNUeWkSrtKeQTXaxUNPS1-93No-iKIKXkMMuhPkyr52d-QAuqEaf4cUScxPBLVcz1xLc8y3GEWPZotrVcUo2wfp9PhyKpxJcbXphlFLp5TN1bV7TWn48jVbmqKwpuLG5bAu2GGNZr9amYuB6aWs0uiNqCcxjipIkFc1Br4eJoONgfiqMP_rmglJOlR-GOPUuncr_vmsf9vIoktxmsB9ASSVVqBQMDSRX2Crsfhk3WIOHUXvwfEO6iZ6ba-ckTGLyNkadmCjS_UDDQjorc3hG1uOQjKyX93CmSDujrCeDIsJV80N47dwP7h6tnEjBihxhLy0bBS-kJ6Rr01B4IWbEnPrS1PRi1D9HMiaUTam2FUYrUkYRF46DD21KuhFrHUE5mSbqGAiX3OMIooy0j7qvQ9-NlQ69luKhF8e6Ds1CtkGUTxk3ZBeTIM02qAgQjcCgEeRo1OFys2OWTdj4Y23NSH-zLhd8HRoFfEGugovA4dwM1vEpP_l91ynsGO747DylAeXlfKXOYDtaL8eL-Xn6d30C3pnJug
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7qA9SDj6pYn3vwIhi7SbPJrjdRa4u2iEZpTyGb7GKhRqltf7-zeRRFEbyEHHYhzJd57ezMB3BMNfoMlkjMTQS3XO27luDMs3yOGMsG1a5OMrIJv9vlvZ64r8DprBdGKZVdPlNn5jWr5Sdv8cQcldUFNzbXn4MF5rqOnXdrzWoGLsuao9EhUUtgJlMWJamoB50OpoKOgxmqMB7pmxPKWFV-mOLMvzTX_vdl67BaxJHkIgd-AyoqrcJaydFACpWtwsqXgYObcNO_Ch7OSTvVI3PxnERpQp4HqBVDRdqvaFpIc2KOz8h0EJG-9fgSvStylZPWk6CMcdVoC56a18FlyyqoFKzYEfbYslH0QjIhXZtGgkWYE3PqSVPVS1ADHen7QtmUalthvCJlHHPhOPjQpqgb-41tmE_fUrUDhEvOOMIoY-2h9uvIcxOlI9ZQPGJJomtQL2UbxsWccUN3MQyzfIOKENEIDRphgUYNTmY73vMZG3-s3TTSn60rBF-D_RK-sFDCj9Dh3IzW8Sjf_X3XESy1gs5deNfu3u7BsmGSz09X9mF-PJqoA1iMp-PBx-gw-9M-AYmGzQE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YDTR%3A+Infrared+and+Visible+Image+Fusion+via+Y-Shape+Dynamic+Transformer&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Tang%2C+Wei&rft.au=He%2C+Fazhi&rft.au=Liu%2C+Yu&rft.date=2023&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=25&rft.spage=5413&rft.epage=5428&rft_id=info:doi/10.1109%2FTMM.2022.3192661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2022_3192661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon