Path-Following Control of Autonomous Underwater Vehicles Subject to Velocity and Input Constraints via Neurodynamic Optimization
In this paper, a design method is presented for path-following control of underactuated autonomous underwater vehicles subject to velocity and input constraints, as well as internal and external disturbances. In the guidance loop, a kinematic control law of the desired surge speed and pitch rate is...
Uložené v:
| Vydané v: | IEEE transactions on industrial electronics (1982) Ročník 66; číslo 11; s. 8724 - 8732 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0278-0046, 1557-9948 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, a design method is presented for path-following control of underactuated autonomous underwater vehicles subject to velocity and input constraints, as well as internal and external disturbances. In the guidance loop, a kinematic control law of the desired surge speed and pitch rate is derived based on a backstepping technique and a line-of-sight guidance principle. In the control loop, an extended state observer is developed to estimate the extended state composed of unknown internal dynamics and external disturbances. Then, a disturbance rejection control law is constructed using the extended state observer. To bridge the guidance loop and the control loop, a reference governor is proposed for computing optimal guidance signals within the velocity and input constraints. The reference governor is formulated as a quadratically constrained optimization problem. A projection neural network is employed for solving the optimization problem in real time. Simulation results illustrate the effectiveness of the proposed method for path-following control of autonomous underwater vehicles subject to constraints and disturbances simultaneously in the vertical plane. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0278-0046 1557-9948 |
| DOI: | 10.1109/TIE.2018.2885726 |