A derivative-free memoryless BFGS hyperplane projection method for solving large-scale nonlinear monotone equations

In this work, by combining a three-term memoryless BFGS conjugate gradient direction with the hyperplane projection technique , we develop a new derivative-free algorithm to solve nonlinear monotone equations. The method is motivated by conjugate gradient method and hyperplane projection, as well as...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 27; číslo 7; s. 3805 - 3815
Hlavní autoři: Huang, Fei, Deng, Songhai, Tang, Jinyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2023
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, by combining a three-term memoryless BFGS conjugate gradient direction with the hyperplane projection technique , we develop a new derivative-free algorithm to solve nonlinear monotone equations. The method is motivated by conjugate gradient method and hyperplane projection, as well as quasi-Newton method. The search direction has three terms and is obtained by modifying the BFGS updating matrix with a unit matrix in each step. The algorithm needs no matrices computing, and it is suitable for solving large-scale nonlinear monotone equations. The proposed method satisfies the Dai–Liao conjugacy conditions and is always descent irrelative to any line searches. Under standard conditions, the optimizer solution can be obtained by a globally convergent sequence as long as the initial point is given. The reported numerical experiments show that the method is promising and efficient compared to similar algorithms in the literature.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-022-07536-4