Theory of Characteristic Modes for Nonsymmetric Surface Integral Operators

The theory of characteristic modes is formulated with nonsymmetric surface integral operators for perfect electric conductors, impedance surfaces, and homogeneous dielectric bodies. For nonsymmetric (nonself-adjoint) operators, the eigenvectors are not orthogonal with respect to the weighted inner p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on antennas and propagation Ročník 69; číslo 3; s. 1505 - 1512
Hlavní autoři: Yla-Oijala, Pasi, Wallen, Henrik
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-926X, 1558-2221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The theory of characteristic modes is formulated with nonsymmetric surface integral operators for perfect electric conductors, impedance surfaces, and homogeneous dielectric bodies. For nonsymmetric (nonself-adjoint) operators, the eigenvectors are not orthogonal with respect to the weighted inner product defined with the weighting operator of the generalized eigenvalue equation. Rather, this orthogonality holds between the eigenvectors of the original equation and the adjoint equation, including adjoint operators. This implies that the modal expansion, used to express any scattering or radiation solution as a linear combination of the modes, requires these two sets of eigenvectors. For matrix equations, the eigenvectors of the adjoint equation correspond to the left eigenvectors of the original equation.
AbstractList The theory of characteristic modes is formulated with nonsymmetric surface integral operators for perfect electric conductors, impedance surfaces, and homogeneous dielectric bodies. For nonsymmetric (nonself-adjoint) operators, the eigenvectors are not orthogonal with respect to the weighted inner product defined with the weighting operator of the generalized eigenvalue equation. Rather, this orthogonality holds between the eigenvectors of the original equation and the adjoint equation, including adjoint operators. This implies that the modal expansion, used to express any scattering or radiation solution as a linear combination of the modes, requires these two sets of eigenvectors. For matrix equations, the eigenvectors of the adjoint equation correspond to the left eigenvectors of the original equation.
Author Wallen, Henrik
Yla-Oijala, Pasi
Author_xml – sequence: 1
  givenname: Pasi
  orcidid: 0000-0002-3844-5879
  surname: Yla-Oijala
  fullname: Yla-Oijala, Pasi
  email: pasi.yla-oijala@aalto.fi
  organization: Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
– sequence: 2
  givenname: Henrik
  orcidid: 0000-0001-7972-0809
  surname: Wallen
  fullname: Wallen, Henrik
  organization: Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
BookMark eNp9kE1PAjEQhhuDiYDeTbxs4nmx7ZZteyTEDwyKiZh4a4ZuV5bAFqflwL-3BOLBg6fJzLzPTPL0SKf1rSPkmtEBY1TfzUdvA045HRSUSVHIM9Jlw6HKOeesQ7qUMpVrXn5ekF4Iq9QKJUSXPM-XzuM-83U2XgKCjQ6bEBubvfjKhaz2mL36Nuw3Gxcxjd93WIN12aSN7gthnc22DiF6DJfkvIZ1cFen2icfD_fz8VM-nT1OxqNpbrlmMWelkrCwrKqcXGhOoVK1BUEFMAlSVrQShbWC1UqXqhRCWQaVXgCwNFLaFX1ye7y7Rf-9cyGald9hm14aLrQqpSq5SqnymLLoQ0BXG9tEiI1vI0KzNoyagzeTvJmDN3PylkD6B9xiswHc_4fcHJHGOfcb12mphqL4AXAHesE
CODEN IETPAK
CitedBy_id crossref_primary_10_1109_TAP_2022_3145441
crossref_primary_10_1109_TAP_2020_3044640
crossref_primary_10_1109_TAP_2022_3209749
crossref_primary_10_1109_LGRS_2022_3218411
crossref_primary_10_1109_TAP_2023_3286039
crossref_primary_10_1109_TAP_2022_3209264
Cites_doi 10.1109/TAP.1971.1139999
10.1007/978-3-031-01707-0
10.1093/acprof:oso/9780198508885.001.0001
10.1109/TAP.2019.2905794
10.1049/el:19820681
10.1109/LAWP.2011.2155022
10.1109/TAP.2017.2708094
10.1109/TAP.2019.2948509
10.1109/TMTT.2007.908678
10.1109/TAP.2015.2452938
10.1109/TAP.2017.2741063
10.1109/TAP.2017.2772873
10.1002/jnm.2627
10.1109/TAP.2018.2835313
10.1109/TAP.1972.1140154
10.1109/TAP.2016.2543756
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2020.3017437
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 1512
ExternalDocumentID 10_1109_TAP_2020_3017437
9174854
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-1687abc1dde7b920ad8fca404a17a77d0d43cc41f89686448c1ad9baa11f889e3
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626422500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-926X
IngestDate Mon Jun 30 10:07:38 EDT 2025
Sat Nov 29 05:23:10 EST 2025
Tue Nov 18 21:20:27 EST 2025
Wed Aug 27 02:48:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1687abc1dde7b920ad8fca404a17a77d0d43cc41f89686448c1ad9baa11f889e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7972-0809
0000-0002-3844-5879
PQID 2498678628
PQPubID 85476
PageCount 8
ParticipantIDs proquest_journals_2498678628
ieee_primary_9174854
crossref_citationtrail_10_1109_TAP_2020_3017437
crossref_primary_10_1109_TAP_2020_3017437
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
parlett (ref9) 1980
ref12
ref15
ref14
ref11
horn (ref8) 1990
chew (ref7) 1995
ref10
ref2
ref1
ref17
ref16
ref19
ref18
chew (ref6) 2009
ref4
ref3
ref5
References_xml – year: 1980
  ident: ref9
  publication-title: The Symmetric Eigenvalue Problem
– ident: ref1
  doi: 10.1109/TAP.1971.1139999
– year: 2009
  ident: ref6
  publication-title: Integral Equation Methods for Electromagnetic and Elastic Waves
  doi: 10.1007/978-3-031-01707-0
– ident: ref11
  doi: 10.1093/acprof:oso/9780198508885.001.0001
– ident: ref5
  doi: 10.1109/TAP.2019.2905794
– ident: ref3
  doi: 10.1049/el:19820681
– ident: ref12
  doi: 10.1109/LAWP.2011.2155022
– ident: ref13
  doi: 10.1109/TAP.2017.2708094
– ident: ref19
  doi: 10.1109/TAP.2019.2948509
– ident: ref17
  doi: 10.1109/TMTT.2007.908678
– ident: ref4
  doi: 10.1109/TAP.2015.2452938
– ident: ref14
  doi: 10.1109/TAP.2017.2741063
– ident: ref15
  doi: 10.1109/TAP.2017.2772873
– ident: ref10
  doi: 10.1002/jnm.2627
– year: 1990
  ident: ref8
  publication-title: Matrix Analysis
– ident: ref16
  doi: 10.1109/TAP.2018.2835313
– year: 1995
  ident: ref7
  publication-title: Waves and Fields in Inhomogeneous Media
– ident: ref2
  doi: 10.1109/TAP.1972.1140154
– ident: ref18
  doi: 10.1109/TAP.2016.2543756
SSID ssj0014844
Score 2.3823926
Snippet The theory of characteristic modes is formulated with nonsymmetric surface integral operators for perfect electric conductors, impedance surfaces, and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1505
SubjectTerms Adjoint operator
characteristic modes (CMs)
Conductors
dielectric object
Dielectrics
Eigenvalues
Eigenvalues and eigenfunctions
Eigenvectors
Electric conductors
Impedance
impedance boundary condition (IBC)
Integral equations
Integrals
Magnetic resonance imaging
Operators (mathematics)
Orthogonality
perfect electric conductor (PEC)
Scattering
Surface impedance
surface integral operator
Title Theory of Characteristic Modes for Nonsymmetric Surface Integral Operators
URI https://ieeexplore.ieee.org/document/9174854
https://www.proquest.com/docview/2498678628
Volume 69
WOSCitedRecordID wos000626422500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014844
  issn: 0018-926X
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1WsVsnBi-DazW6ax7EUi4rUglV6W7JJFoS-6EPw35tkt4tFEbwtSwLLJJn5vp3JNwBXWlEdUovcjDYkIBnFgWxpFWQxYZkFAFT6qsq3J9br8eFQ9CtwU96FMcb44jNz6x59Ll9P1cr9KmtaakF4i2zBFmM0v6tVZgwIJ7niMrYHOKLDdUoyFM1Bu2-JYGT5aejwN9sIQb6nyg9H7KNLd_9_33UAewWKRO182Q-hYiZHsPtNW7AGj_mtezTNUGdDlBm59mcLZMEq6tkt9zkeu6ZaCr2s5plUBj3kAhIj9DwzPge_OIbX7t2gcx8UjRMCFQm8DDDlTKYKW9fFUhGFUvNMSRISiZlkTIeaxEoRnHFBuSNoCkstUimxfcWFiU-gOplOzCmgmKbSOqLYCC2JoNoCciMjJRVOBc1aUR2aa1smqlAVd80tRolnF6FIrPUTZ_2ksH4drssZs1xR44-xNWftclxh6Do01suVFEdukVgeyW3kpRE_-33WOexEriDFF5A1oLqcr8wFbKuP5ftiful30xfaMcgZ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CurBt1itmoMXwbWbbJpNjkUsVWsVrNLbkk2yIPRFH4L_3iS7LYoieFuWBJZJMvN9O5NvAM61YjpkFrkZbWhAM4YDWdMqyCIaZxYAMOmrKl9bcbvNu13xtASXi7swxhhffGau3KPP5euhmrlfZVVLLSiv0WVYqVFKwvy21iJnQDnNNZexPcKEdedJyVBUO_UnSwWJZaihQ-DxtyDku6r8cMU-vjS2_vdl27BZ4EhUzxd-B5bMYBc2vqgL7sFdfu8eDTN0_U2WGbkGaBNk4Spq20330e-7tloKPc_GmVQG3eYSEj30ODI-Cz_Zh5fGTee6GRStEwJFBJ4GmPFYpgpb5xWngoRS80xJGlKJYxnHOtQ0UorijAvGHUVTWGqRSontKy5MdAClwXBgDgFFLJXWFUVGaEkF0xaSG0mUVDgVLKuRMlTntkxUoSvu2lv0Es8vQpFY6yfO-klh_TJcLGaMck2NP8buOWsvxhWGLkNlvlxJcegmiWWS3MZeRvjR77POYK3ZeWglrdv2_TGsE1ee4svJKlCajmfmBFbV-_RtMj71O-sTbUrLYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory+of+Characteristic+Modes+for+Nonsymmetric+Surface+Integral+Operators&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Yla-Oijala%2C+Pasi&rft.au=Wallen%2C+Henrik&rft.date=2021-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=69&rft.issue=3&rft.spage=1505&rft_id=info:doi/10.1109%2FTAP.2020.3017437&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon