Theory of Characteristic Modes for Nonsymmetric Surface Integral Operators

The theory of characteristic modes is formulated with nonsymmetric surface integral operators for perfect electric conductors, impedance surfaces, and homogeneous dielectric bodies. For nonsymmetric (nonself-adjoint) operators, the eigenvectors are not orthogonal with respect to the weighted inner p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on antennas and propagation Ročník 69; číslo 3; s. 1505 - 1512
Hlavní autoři: Yla-Oijala, Pasi, Wallen, Henrik
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-926X, 1558-2221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The theory of characteristic modes is formulated with nonsymmetric surface integral operators for perfect electric conductors, impedance surfaces, and homogeneous dielectric bodies. For nonsymmetric (nonself-adjoint) operators, the eigenvectors are not orthogonal with respect to the weighted inner product defined with the weighting operator of the generalized eigenvalue equation. Rather, this orthogonality holds between the eigenvectors of the original equation and the adjoint equation, including adjoint operators. This implies that the modal expansion, used to express any scattering or radiation solution as a linear combination of the modes, requires these two sets of eigenvectors. For matrix equations, the eigenvectors of the adjoint equation correspond to the left eigenvectors of the original equation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2020.3017437