Constrained Online Convex Optimization With Feedback Delays
In this article, we study constrained online convex optimization (OCO) in the presence of feedback delays, where a decision maker chooses sequential actions without knowing the loss functions and constraint functions a priori . The loss/constraint functions vary with time and their feedback informat...
Uložené v:
| Vydané v: | IEEE transactions on automatic control Ročník 66; číslo 11; s. 5049 - 5064 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this article, we study constrained online convex optimization (OCO) in the presence of feedback delays, where a decision maker chooses sequential actions without knowing the loss functions and constraint functions a priori . The loss/constraint functions vary with time and their feedback information is revealed to the decision maker with delays, which arise in many applications. We first consider the scenario of delayed function feedback, in which the complete information of the loss/constraint functions is revealed to the decision maker with delays. We develop a modified online saddle point algorithm suitable for constrained OCO with feedback delays. Sublinear regret and sublinear constraint violation bounds are established for the algorithm in terms of the delays. In practice, the complete information (functional forms) of the loss/constraint functions may not be revealed to the decision maker. Thus, we further examine the scenario of delayed bandit feedback, where only the values of the loss/constraint functions at two random points close to the chosen action are revealed to the decision maker with delays. A delayed version of the bandit online saddle point algorithm is proposed by utilizing stochastic gradient estimates of the loss/constraint functions based on delayed bandit feedback. We also establish sublinear regret and sublinear constraint violation bounds for this bandit optimization algorithm in terms of the delays. Finally, numerical results for online quadratically constrained quadratic programs are presented to corroborate the efficacy of the proposed algorithms. |
|---|---|
| AbstractList | In this article, we study constrained online convex optimization (OCO) in the presence of feedback delays, where a decision maker chooses sequential actions without knowing the loss functions and constraint functions a priori . The loss/constraint functions vary with time and their feedback information is revealed to the decision maker with delays, which arise in many applications. We first consider the scenario of delayed function feedback, in which the complete information of the loss/constraint functions is revealed to the decision maker with delays. We develop a modified online saddle point algorithm suitable for constrained OCO with feedback delays. Sublinear regret and sublinear constraint violation bounds are established for the algorithm in terms of the delays. In practice, the complete information (functional forms) of the loss/constraint functions may not be revealed to the decision maker. Thus, we further examine the scenario of delayed bandit feedback, where only the values of the loss/constraint functions at two random points close to the chosen action are revealed to the decision maker with delays. A delayed version of the bandit online saddle point algorithm is proposed by utilizing stochastic gradient estimates of the loss/constraint functions based on delayed bandit feedback. We also establish sublinear regret and sublinear constraint violation bounds for this bandit optimization algorithm in terms of the delays. Finally, numerical results for online quadratically constrained quadratic programs are presented to corroborate the efficacy of the proposed algorithms. |
| Author | Zhang, Junshan Cao, Xuanyu Poor, H. Vincent |
| Author_xml | – sequence: 1 givenname: Xuanyu orcidid: 0000-0003-0190-4362 surname: Cao fullname: Cao, Xuanyu email: xyc@illinois.edu organization: Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 2 givenname: Junshan orcidid: 0000-0002-3840-1753 surname: Zhang fullname: Zhang, Junshan email: junshan.zhang@asu.edu organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA – sequence: 3 givenname: H. Vincent orcidid: 0000-0002-2062-131X surname: Poor fullname: Poor, H. Vincent email: poor@princeton.edu organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA |
| BookMark | eNp9UE1LAzEUDFLBtnoXvCx43pq8fOwGT6VaFQq9VDyGbPoWU7e7dbMV6683tcWDB0_DPGbeezMD0qubGgm5ZHTEGNU3i_FkBBToiFNOM8FPSJ9JmacggfdIn1KWpxpydUYGIawiVUKwPrmdNHXoWutrXCbzuoqYxNEHfibzTefX_st2vqmTF9-9JlPEZWHdW3KHld2Fc3Ja2irgxRGH5Hl6v5g8prP5w9NkPEsdaNalTOpC53bphMgkAo0MOChkzkIBNJc5aoDCZqXkzgmni0xnWYkCVaGAaT4k14e9m7Z532LozKrZtnU8aUDmSoHiXEWVOqhc24TQYmmc736e38erDKNmX5SJRZl9UeZYVDTSP8ZN69e23f1nuTpYPCL-ymMKkFLwb5Uic4c |
| CODEN | IETAA9 |
| CitedBy_id | crossref_primary_10_1109_TAC_2024_3468403 crossref_primary_10_1016_j_neucom_2022_05_024 crossref_primary_10_1007_s11768_021_00041_3 crossref_primary_10_1109_TSMC_2024_3496564 crossref_primary_10_3390_technologies13080327 crossref_primary_10_1109_JSAC_2023_3242700 crossref_primary_10_1109_LCSYS_2022_3155067 crossref_primary_10_1007_s40305_023_00496_y crossref_primary_10_1287_ijoc_2022_1228 crossref_primary_10_1109_TCNS_2024_3432250 crossref_primary_10_1109_TNSE_2024_3409755 crossref_primary_10_1109_TAC_2023_3237781 crossref_primary_10_1016_j_arcontrol_2023_100904 crossref_primary_10_1109_LWC_2022_3152737 crossref_primary_10_1109_TPWRS_2023_3282368 crossref_primary_10_1016_j_amc_2023_127865 crossref_primary_10_1080_00207721_2023_2209566 crossref_primary_10_1109_TICPS_2025_3538690 crossref_primary_10_1016_j_eswa_2025_127871 crossref_primary_10_1016_j_neucom_2025_131406 crossref_primary_10_1109_TNET_2022_3188285 |
| Cites_doi | 10.1109/TSP.2015.2449255 10.1109/ICC.2018.8422559 10.1561/2400000013 10.1109/TSP.2017.2750109 10.1109/JIOT.2018.2839563 10.1561/2200000018 10.1109/TAC.2016.2627401 10.1109/TAC.2018.2884653 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TAC.2020.3030743 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 5064 |
| ExternalDocumentID | 10_1109_TAC_2020_3030743 9222554 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Defense Threat Reduction Agency grantid: HDTRA1-13-1-0029 funderid: 10.13039/100000774 – fundername: Army Research Office grantid: W911NF-16-1-0448 funderid: 10.13039/100000183 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-159b98adc4475e209b92326e1ca2b20858e922ba7f53cc4c9b7977fe4e6b62193 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711740700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9286 |
| IngestDate | Mon Jun 30 10:07:48 EDT 2025 Tue Nov 18 22:10:31 EST 2025 Sat Nov 29 05:41:00 EST 2025 Wed Aug 27 03:03:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-159b98adc4475e209b92326e1ca2b20858e922ba7f53cc4c9b7977fe4e6b62193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0190-4362 0000-0002-3840-1753 0000-0002-2062-131X |
| PQID | 2586626336 |
| PQPubID | 85475 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TAC_2020_3030743 proquest_journals_2586626336 ieee_primary_9222554 crossref_primary_10_1109_TAC_2020_3030743 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | cutkosky (ref3) 0 ref24 ref12 ref23 langford (ref15) 0 mahdavi (ref6) 2012; 13 ref14 joulani (ref16) 0 liakopoulos (ref22) 0 yu (ref10) 0 cesa-bianchi (ref20) 0 ref11 ref1 zinkevich (ref2) 0 neely (ref9) 2017 li (ref18) 0 ref8 quanrud (ref17) 0 ref7 shamir (ref19) 0 rivera (ref13) 2018 mannor (ref21) 2009; 10 flaxman (ref4) 0 agarwal (ref5) 0 |
| References_xml | – start-page: 28 year: 0 ident: ref5 article-title: Optimal algorithms for online convex optimization with multi-point bandit feedback – start-page: 3944 year: 0 ident: ref22 article-title: Cautious regret minimization: Online optimization with long-term budget constraints publication-title: Proc Int Conf Mach Learn – start-page: 1160 year: 0 ident: ref20 article-title: Online learning with switching costs and other adaptive adversaries publication-title: Proc Adv Neural Inf Process Syst – year: 2018 ident: ref13 article-title: The online saddle point problem: Applications to online convex optimization with knapsacks – ident: ref14 doi: 10.1109/TSP.2015.2449255 – ident: ref23 doi: 10.1109/ICC.2018.8422559 – start-page: 993 year: 0 ident: ref18 article-title: Bandit online learning with unknown delays publication-title: Proc 22nd Int Conf Artif Intell Statist – start-page: 928 year: 0 ident: ref2 article-title: Online convex programming and generalized infinitesimal gradient ascent publication-title: Proc Int Conf Mach Learn – ident: ref1 doi: 10.1561/2400000013 – volume: 10 start-page: 569 year: 2009 ident: ref21 article-title: Online learning with sample path constraints publication-title: J Mach Learn Res – start-page: 2331 year: 0 ident: ref15 article-title: Slow learners are fast publication-title: Proc Neural Inf Process Syst – start-page: 1270 year: 0 ident: ref17 article-title: Online learning with adversarial delays publication-title: Proc Neural Inf Process Syst – ident: ref8 doi: 10.1109/TSP.2017.2750109 – start-page: 3086 year: 0 ident: ref19 article-title: Online learning with local permutations and delayed feedback publication-title: Proc Int Conf Mach Learn – ident: ref11 doi: 10.1109/JIOT.2018.2839563 – year: 2017 ident: ref9 article-title: Online convex optimization with time-varying constraints – start-page: 1428 year: 0 ident: ref10 article-title: Online convex optimization with stochastic constraints publication-title: Proc Neural Inf Process Syst – start-page: 1453 year: 0 ident: ref16 article-title: Online learning under delayed feedback publication-title: Proc Int Conf Mach Learn – ident: ref24 doi: 10.1561/2200000018 – ident: ref7 doi: 10.1109/TAC.2016.2627401 – start-page: 748 year: 0 ident: ref3 article-title: Online convex optimization with unconstrained domains and losses publication-title: Proc Neural Inf Process Syst – volume: 13 start-page: 2503 year: 2012 ident: ref6 article-title: Trading regret for efficiency: Online convex optimization with long term constraints publication-title: J Mach Learn Res – ident: ref12 doi: 10.1109/TAC.2018.2884653 – start-page: 385 year: 0 ident: ref4 article-title: Online convex optimization in the bandit setting: Gradient descent without a gradient publication-title: Proc ACM-SIAM Symp Discrete Algorithms |
| SSID | ssj0016441 |
| Score | 2.5085428 |
| Snippet | In this article, we study constrained online convex optimization (OCO) in the presence of feedback delays, where a decision maker chooses sequential actions... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5049 |
| SubjectTerms | Algorithms Bandit feedback Benchmark testing Computational geometry constrained optimization Constraints Convex analysis Convexity Decision making Decision theory Delays Feedback feedback delay function feedback Functionals online convex optimization (OCO) Optimization Saddle points Time factors |
| Title | Constrained Online Convex Optimization With Feedback Delays |
| URI | https://ieeexplore.ieee.org/document/9222554 https://www.proquest.com/docview/2586626336 |
| Volume | 66 |
| WOSCitedRecordID | wos000711740700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOqUHL4J1bZLmA09jOjxNDxN3K0ma4XBusnWi_71J2hVFEby1kED6krzfe33v_R7AmcVMmXEmQ2XRIiQSj0LFaRSSOJKGShVzLn2zCdbv8-FQ3NfgoqqFMcb45DNz6R59LD-b6aX7VdYWzjlJyBqsMcaKWq0qYuBwvdC69gIjXoUkI9EedLrWEUTWP3UnmuBvEOR7qvxQxB5detv_W9cObJVWZNAptn0Xama6B5tfuAUbcOVacfoGECYLCkLRoOtSzN-DO6smXsr6y-BxnD8FPYthSurn4NpM5MdiHx56N4PubVh2Sgg1EnEeWptECS4z7ej7DIrsm7WUqIm1RMp14eTGrlFJNkqw1kQLxazdNzLEUEWtzsIHUJ_OpuYQgkQnCjMlHO8y0RQpC2DYuGipzAjDWRPaK-GluqQRdx8zSb07EYnUijt14k5LcTfhvJrxWlBo_DG24cRbjSsl24TWan_S8o4tUpRw6rh0MD36fdYxbCCXgeIrB1tQz-dLcwLr-i0fL-an_vh8AkGewA8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFNQHf4vTqX3wRbCuTdM2wacxHRPn9GHi3kKSZjicm2yd6H9vknZFUQTfWkggvST33fXuvgM40ZjJExJzV2i0cDEP-q4gkedi3-Mq4sInhNtmE3GnQ3o9el-Cs6IWRillk8_UuXm0sfxkLGfmV1mNGuckxAuwGGKM_Kxaq4gZGGTP9K6-wogUQUmP1rr1hnYFkfZQzZnGwTcQsl1Vfqhiiy_N9f-tbAPWcjvSqWcbvwklNdqC1S_sgttwYZpx2hYQKnEySlGnYZLM3507rShe8gpM53GQPjlNjWKCy2fnUg35x3QHHppX3UbLzXsluBJRP3W1VSIo4Yk0BH4KefpN20qR8iVHwvThJEqvUfC4HwZSYklFrC2_vsIqEpHWWsEulEfjkdoDJ5ShCGJBDfMylhESGsICZeKlPMFxkFSgNhcekzmRuPmYIbMOhUeZFjcz4ma5uCtwWsx4zUg0_hi7bcRbjMslW4HqfH9YfsumDIUkMmw6QbT_-6xjWG51b9usfd25OYAVZPJRbB1hFcrpZKYOYUm-pYPp5MgepU9uGcNW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Online+Convex+Optimization+With+Feedback+Delays&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Cao%2C+Xuanyu&rft.au=Zhang%2C+Junshan&rft.au=Poor%2C+H.+Vincent&rft.date=2021-11-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=66&rft.issue=11&rft.spage=5049&rft.epage=5064&rft_id=info:doi/10.1109%2FTAC.2020.3030743&rft.externalDocID=9222554 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |