Unifying Message Passing Algorithms Under the Framework of Constrained Bethe Free Energy Minimization

Variational message passing (VMP), belief propagation (BP) and expectation propagation (EP) have found their wide applications in complex statistical signal processing problems. In addition to viewing them as a class of algorithms operating on graphical models, this article unifies them under an opt...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on wireless communications Ročník 20; číslo 7; s. 4144 - 4158
Hlavní autoři: Zhang, Dan, Song, Xiaohang, Wang, Wenjin, Fettweis, Gerhard, Gao, Xiqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1536-1276, 1558-2248
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Variational message passing (VMP), belief propagation (BP) and expectation propagation (EP) have found their wide applications in complex statistical signal processing problems. In addition to viewing them as a class of algorithms operating on graphical models, this article unifies them under an optimization framework, namely, Bethe free energy minimization with differently and appropriately imposed constraints. This new perspective in terms of constraint manipulation can offer additional insights on the connection between different message passing algorithms and is valid for a generic statistical model. It also founds a theoretical framework to systematically derive message passing variants. Taking the sparse signal recovery (SSR) problem as an example, a low-complexity EP variant can be obtained by simple constraint reformulation, delivering better estimation performance with lower complexity than the standard EP algorithm. Furthermore, we can resort to the framework for the systematic derivation of hybrid message passing for complex inference tasks. Notably, a hybrid message passing algorithm is exemplarily derived for joint SSR and statistical model learning with near-optimal inference performance and scalable complexity.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2021.3056193